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Abstract

Accuracy Dominance on Infinite Opinion Sets

by

Mikayla Kelley

Master of Arts in Mathematics

University of California, Berkeley

Professor Lawrence Evans, Chair

There is a well-known equivalence between avoiding accuracy dominance and having
probabilistically coherent credences (see, e.g., de Finetti 1974, Joyce 2009, Predd
et al. 2009, Pettigrew 2016). However, this equivalence has been established in the
accuracy literature only when the opinion set over which credences are defined is
finite. In Chapter 1, we establish connections between accuracy dominance and
coherence when credences are defined over certain classes of infinite opinion sets.
One class of opinion sets for which we prove results is the class of countable point-
finite opinion sets. In Chapter 2, we characterize the countable algebras of sets that
can be generated by a point-finite collection.
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Chapter 1

Accuracy and Coherence:
The Infinite Case

Formal epistemologists study knowledge and rationality using mathematical tools
such as logic and probability theory. A central topic of study is the constraints on
rational degrees of belief, or credences, in propositions. Formal epistemologists model
credences using a standard mathematical framework (see, e.g., Huber 2016, Sec. 2).
There is a nonempty set W whose elements represent possible worlds ; subsets of W
represent propositions ; and a world w being an element of a proposition is interpreted
to mean that the proposition is true at w. A set of propositions is called an opinion
set ; and a person’s credences in the propositions in an opinion set are represented
by a credence function, which is a map from the opinion set to the interval [0, 1].

For example, consider a person’s uncertainty about a sequence of n coin flips.
The set of possible worlds consists of all possible ways the n coin flips could land,
i.e., all sequences of “heads” and “tails” of length n. The set of sequences in which
“heads” shows up in the kth entry represents the proposition “the kth coin flip lands
heads.” The sequence of all “heads” is an element of this proposition, which is
interpreted to mean that the proposition “the kth coin flip lands heads” is true at
the world in which the coin lands heads every time. The set of propositions of the
form “the kth coin flip lands heads” for k ∈ {1, . . . , n} is an example of an opinion
set; and an agent who believes that each of the n coin flips has a 50% chance of
landing heads would have a representing credence function on this opinion set that
is the constant function with value .5.

Philosophers have discussed extensively what the constraints are on a rational
agent’s credence function at a point in time (see, e.g., Talbott 2016, Vineberg 2016,
Pettigrew 2016). For example, there seems to be something irrational about being
more confident that the coin will land heads n times than that the coin will land
heads at least once, since the coin lands heads at least once whenever the coin lands
heads n times. Such credences are irrational according to a popular philosophical
view called probabilism: a rational person’s degrees of belief should satisfy the ax-
ioms of probability. The topic of this chapter is a collection of mathematical results
that show there is reason to satisfy the constraints imposed by probabilism, based
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solely on a concern for having accurate credences.
Toward formally defining accuracy for credence functions, for w ∈ W , we let

vw : F → {0, 1} be the map given by vw(p) = 1 if and only if w ∈ p. Each vw is
a possible truth assignment to the propositions in F , namely the truth assignment
which maps all and only the true propositions at world w to 1. The inaccuracy
of a credence function c at a world w ∈ W is the distance D(vw, c) between vw
and c, given some appropriate measure of distance D. There are several results
dating back to de Finetti 1974 showing that for certain D, a credence function is
extendable to a finitely additive probability function on an algebra containing F if
and only if there is no credence function c′ that accuracy dominates c, in the sense
that D(vw, c) > D(vw, c

′) for all w ∈ W . Philosophers starting with Joyce (1998)
have cited these dominance results as providing an accuracy-based justification for
probabilism.

However, there is a limitation to almost all of the literature on accuracy argu-
ments for probabilism: the opinion set is assumed to be finite.1 Indeed, de Finetti
(1974), Lindley (1987), Joyce (1998, 2009), Predd et al. (2009), Leitgeb and Pet-
tigrew (2010a,b), and Pettigrew (2016) all establish their dominance results only
for finite opinion sets. In this chapter, we remove this assumption and prove domi-
nance results that we hope to be useful in evaluating the extent to which accuracy
arguments for probabilism succeed when the opinion set is infinite.

We begin in Section 1.1 by reviewing the mathematical framework and the stan-
dard dominance result for finite opinion sets. Sections 1.2-1.4 are concerned with
accuracy and coherence in the infinite setting. In Sections 1.2-1.3, we explore nec-
essary and sufficient conditions in terms of coherence for avoiding dominance on
multiple domains of countable opinion sets, establishing the finite dominance result
on two of them. Finally, in Section 1.4, we extend the accuracy framework to the
uncountable setting and prove that coherence is necessary to avoid dominance on
uncountable opinion sets.

1.1 The Finite Case
Let us first set up the framework that will be used throughout the chapter. Fix a
set W (not necessarily finite) which represents the set of possible worlds and, for
now, a finite set F ⊆ P(W )2 that represents the set of propositions an agent has
beliefs about.

Definition 1.1.1. An algebra over W is a subset F∗ ⊆ P(W ) such that:
1Walsh (2019) gives an accuracy dominance argument in the countably infinite context, to

which we return in Section 1.4. In a related but distinct area, Huttegger (2013) and Easwaran
(2013) extend to the infinite setting part of the literature on using minimization of expected
inaccuracy to vindicate epistemic principles. See, e.g., Greaves and Wallace (2005). Finally,
Schervish et al. (2014) prove that in certain countably infinite cases, coherence is sufficient for
avoiding strong dominance. We return to their result in Section 1.3.

2P(W ) denotes the power set of W .
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1. W ∈ F∗;

2. if p, p′ ∈ F∗, then p ∪ p′ ∈ F∗;

3. if p ∈ F∗, then W \ p ∈ F∗.

Definition 1.1.2.

i. A credence function on F is a function from F to [0, 1].

ii. A credence function c is coherent if it can be extended to a finitely additive
probability function on an algebra F∗ overW containing F . This means there
is an algebra F∗ ⊇ F over W and a function c∗ : F∗ → [0, 1] such that:

a) c∗(p) = c(p) for all p ∈ F ;
b) c∗(p ∪ p′) = c∗(p) + c∗(p′) for p, p′ ∈ F∗ with p ∩ p′ = ∅;

c) c∗(W ) = 1.

iii. Otherwise, a credence function is incoherent.

Remark 1.1.3. If F = {p1, . . . , pn}, we identify a credence function over F with
the vector (c(p1), . . . , c(pn)) ∈ [0, 1]n. Thus the space of all credence functions over
F can be identified with [0, 1]n ⊆ Rn.

We now introduce an important subclass of the class of all credence functions,
namely the credence functions that match the truth values of F at a world w exactly.

Definition 1.1.4. Let |F| = n. For each pi ∈ F , let Cpi : W → {0, 1} be defined
by Cpi(w) = 1 if and only if w ∈ pi. Then we call vw = (Cp1(w), . . . , Cpn(w)) the
omniscient credence function at world w. We let VF denote the set of all omniscient
credence functions. Note that |VF | ≤ 2n.

Next, we specify the inaccuracy measures we will be concerned with in this
section. Fix an opinion set F , and let C denote the set of credence functions on F .
We define an inaccuracy measure to be a function of the form

I : C ×W → [0,∞].

The class of inaccuracy measures we consider is characterized by Pettigrew (2016)
and assumed in Predd et al. 2009, namely the inaccuracy measures defined in terms
of an additive Bregman divergence (or, equivalently, an additive and continuous
strictly proper scoring rule; see Pettigrew 2016, p. 66).

Definition 1.1.5. Suppose D : [0, 1]n × [0, 1]n → [0,∞]. Then

1. D is a divergence if D(x,y) ≥ 0 for all x,y ∈ [0, 1]n with equality if and only
if x = y.
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2. D is additive if there exists a function d : [0, 1]2 → [0,∞] such that

D(x,y) =
n∑
i=1

d(xi, yi),

in which case we say D is generated by d.

3. D is an additive Bregman divergence if D is an additive divergence generated
by d and in addition there is a function ϕ : [0, 1]→ R such that:

a) ϕ is continuous, bounded, and strictly convex on [0, 1];

b) ϕ is continuously differentiable on (0, 1) with the formal definition

ϕ′(i) := lim
x→i

ϕ′(x)

for i ∈ {0, 1};3

c) for all x, y ∈ [0, 1], we have

d(x, y) = ϕ(x)− ϕ(y)− ϕ′(y)(x− y).

We call such a d a one-dimensional Bregman divergence.

See, e.g., Banerjee et al. 2005 and Gneiting and Raftery 2007 for more details on
Bregman divergences as well as their connection to strictly proper scoring rules.

In line with the characterization theorem proved by Pettigrew (2016, p. 84), we
introduce the following definition.

Definition 1.1.6. Let a legitimate inaccuracy measure be an inaccuracy measure
given by

I (c, w) = D(vw, c)

where D is an additive Bregman divergence.

In other words, the inaccuracy of a credence function c at a world w is the distance
between c and the omniscient credence function at w, where distance is measured
with an additive Bregman divergence. A popular example of a legitimate inaccuracy
measure is the Brier score (see Section 12, “Homage to the Brier Score,” of Joyce
2009):

I (c, w) =
n∑
i=1

(vw(pi)− c(pi))2.

We now establish the dominance result connecting coherence to accuracy dom-
inance when the opinion set is finite. It was first proved for the Brier score by
de Finetti (1974, p. 87-90) and extended to any legitimate inaccuracy measure by
Predd et al. (2009).

3We do not require ϕ′(i) <∞ for i ∈ {0, 1}.
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Definition 1.1.7. For each pair of credence functions c, c∗ over F ;

1. c∗ weakly dominates c relative to an inaccuracy measure I if{
I (c, w) ≥ I (c∗, w) for all w ∈ W
I (c, w) > I (c∗, w) for some w ∈ W ;

2. c∗ strongly dominates c relative to I if I (c, w) > I (c∗, w) for all w ∈ W .

Theorem 1.1.8 (de Finetti 1974, Predd et al. 2009). Let F be a finite opinion
set, I a legitimate inaccuracy measure, and c a credence function on F . Then the
following are equivalent:

1. c is not strongly dominated;

2. c is not weakly dominated;

3. c is coherent.

On the basis of Theorem 1.1.8, it is concluded in the accuracy literature that
incoherent credences are criticizable because there is a set of credences that do
strictly better in terms of accuracy, no matter how the world turns out to be,
whereas coherent credences are not criticizable in this way. Since it is the basis
of the accuracy argument for probabilism in the finite case, Theorem 1.1.8 is the
result we would like to extend to infinite opinion sets. We now make progress in
this direction when F is countably infinite.

1.2 The Countable Case: Coherence is Necessary
We begin with a discussion of how to measure inaccuracy in the countably infinite
setting. Fix a countably infinite opinion set F over a set W of worlds (of arbitrary
cardinality). Let C be the set of credence functions over F which can be identified
with [0, 1]∞ (see Remark 1.1.3). An inaccuracy measure remains a map from C ×W
into [0,∞].

Analogous to the finite case, the class of inaccuracy measures that we use are
defined in terms of generalizations of additive Bregman divergences.

Definition 1.2.1. Suppose D : [0, 1]∞ × [0, 1]∞ → [0,∞]. Then we call D a gener-
alized additive Bregman divergence if

D(x,y) =
∞∑
i=1

d(xi, yi)

where d is a bounded one-dimensional Bregman divergence as in Definition 1.1.5.3.
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Later in this section we will show that generalized additive Bregman divergences are
examples of what Csiszár (1995) calls Bregman distances, which are generalizations
of additive Bregman divergences defined on spaces of non-negative functions.

Suggestively, we make the following definition.

Definition 1.2.2. Given an enumeration of F ,4 let a generalized legitimate inaccu-
racy measure be an inaccuracy measure I : C ×W → [0,∞] given by

I (c, w) = D(vw, c) =
∞∑
i=1

d(vw(pi), c(pi)) (1.1)

for D a generalized additive Bregman divergence.

Notice that the Brier score extends to a generalized legitimate inaccuracy measure,
namely the squared `2(F) norm

I (c, w) = ||vw − c||2`2(F) =
∞∑
i=1

(vw(pi)− c(pi))2. (1.2)

We call (1.2) the generalized Brier score.
The name “generalized legitimate inaccuracy measure” is motivated by the ob-

servation that a generalized legitimate inaccuracy measure naturally restricted to
the finite opinion sets is a legitimate inaccuracy measure. This is because 1) for both
the generalized and finite legitimate inaccuracy measures, the score of an individual
proposition is defined by a one-dimensional Bregman divergence, and 2) for both
the generalized and finite legitimate inaccuracy measures, the scores of individual
propositions are combined additively to give a score for the entire credence function.
To use the terminology of Leitgeb and Pettigrew (2010a), in the finite and countably
infinite setting, the local scores are the same and the global scores relate to the local
scores in the same way. These observations support the view that, insofar as additive
Bregman divergences are the appropriate functions to use for measuring inaccuracy
in the finite setting, generalized additive Bregman divergences are the appropriate
functions to use for measuring inaccuracy in the countably infinite setting.

We now prove that coherence is necessary to avoid accuracy dominance in the
countably infinite case.

Theorem 1.2.3. Let F be a countably infinite opinion set, I a generalized legiti-
mate inaccuracy measure and c an incoherent credence function. Then

1. c is weakly dominated relative to I by a coherent credence function; and

2. if I (c, w) < ∞ for each w ∈ W , then c is strongly dominated relative to I
by a coherent credence function.

We review the necessary background before proving Theorem 1.2.3.
4The choice of enumeration does not matter since the terms in the infinite sum are non-negative.

Thus convergence is absolute and independent of order.
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Generalized Projections

Csiszár (1995) showed that what he calls generalized projections onto convex sets
with respect to Bregman distances exist under very general conditions. We review
his relevant results here (but assume knowledge of basic measure theory).

Definition 1.2.4. Fix a σ-finite measure space (X,X , µ). The Bregman distance
of non-negative (X -measurable) functions s and t is defined by

Bϕ,µ(s, t) =

∫
d(s(x), t(x))µ(dx) ∈ [0,∞]

where d(s(x), t(x)) = ϕ(s(x)) − ϕ(t(x)) − ϕ′(t(x))(s(x) − t(x)) for some strictly
convex, differentiable function ϕ on (0,∞).5 Note that Bϕ,µ(s, t) = 0 iff s = t µ-a.e.
See Csiszár (1995, p. 165) for details.

Remark 1.2.5. Notice that a generalized additive Bregman divergence Dϕ (whose
generating one-dimensional Bregman divergence d is given in terms of ϕ) has a
corresponding Bregman distance Bϕ̄,µ with

1. the measure space being (N,P(N), µ), where µ is the counting measure on N,
and

2. ϕ̄ on (0,∞) being a strictly convex, differentiable extension of ϕ on [0, 1].6

Thus non-negative (P(N)-measurable) functions are elements of R+∞ . Note, impor-
tantly, that the corresponding generalized legitimate inaccuracy measure I (c, w) =
Dϕ(vw, c) is also given by the corresponding Bregman distance. That is,

I (c, w) = Bϕ̄,µ(vw, c)

because Dϕ = Bϕ̄,µ|[0,1]∞×[0,1]∞ .

To simplify notation, let B denote Bϕ,µ a Bregman distance. Let S be the set of
non-negative measurable functions. For any E ⊆ S and t ∈ S, we write

B(E, t) = inf
s∈E

B(s, t).

If there exists s∗ ∈ E with B(s∗, t) = B(E, t), then s∗ is unique and is called the
B-projection of t onto E. As Csiszár (1995) notes, these projections may not exist.
However a weaker kind of projection always exists. To describe them, we need to
introduce a notion of convergence called loose in µ-measure convergence.

5We do not need to assume ϕ(0) = ϕ′(0) = 1 by the remark following (1.9) in Csiszár 1995.
6Using that ϕ′ exists and is finite at x = 1 as we assumed d is bounded, we extend ϕ as

follows: for x ∈ [1,∞), let ϕ̄(x) = q(x) = x2 + bx + c, where b and c are chosen so ϕ(1) = q(1)
and ϕ′(1) = q′(1). Then using the fact that ϕ̄ is differentiable at 1 by construction and a function
is strictly convex if and only if its derivative is strictly increasing, it is easy to see that ϕ̄ is
differentiable and strictly convex on (0,∞).
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Definition 1.2.6. We say a sequence {sn} ⊆ S converges loosely in µ-measure to
t, denoted by sn  µ t, if for every A ∈ X with µ(A) <∞, we have

lim
n→∞

µ(A ∩ {|sn − t| > ε}) = 0 for all ε > 0.

Definition 1.2.7.

i. Given E ⊆ S and t ∈ S, we say that a sequence {sn} ⊆ E is a B-minimizing
sequence if B(sn, t)→ B(E, t).

ii. If there is an s∗ ∈ S such that every B-minimizing sequence converges to s∗
loosely in µ-measure, then we call s∗ the generalized B-projection of t onto E.

The result that is integral to proving Theorem 1.2.3 is the following.

Theorem 1.2.8 (Csiszár 1995). Let E be a convex subset of S and t ∈ S. If B(E, t)
is finite, then there exists s∗ ∈ S such that

B(s, t) ≥ B(E, t) +B(s, s∗) for every s ∈ E

and B(E, t) ≥ B(s∗, t). It follows that the generalized B-projection of t onto E
exists and equals s∗.

Extending Partial Measures

We also use an extension result of Horn and Tarski (1947) in the proof of Theorem
1.2.3. Following Horn and Tarski, we introduce partial measures and recall that
they can be extended to finitely additive probability functions. Recall the definition
of a finitely additive probability function described in Definition 1.1.2 (we drop the
assumption that F is finite), which we will abbreviate to FA probability function.

Remark 1.2.9. It is a simple corollary of the definition of an FA probability function
c over an algebra F that for any p, p′ ∈ F : if p ⊆ p′, then c(p) ≤ c(p′).

Here is another useful fact about FA probability functions.

Proposition 1.2.10. If c is an FA probability function on F and a0, . . . , am−1 ∈ F ,
then

m−1∑
k=0

c(ak) =
m−1∑
k=0

c(
⋃

p∈Sm,k

⋂
i≤k

api) (1.3)

where Sm,k is the set of all sequences p = (p0, . . . , pk) with 0 ≤ p0 < . . . < pk < m.

To introduce the notion of a partial measure, we need the following definition.
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Definition 1.2.11. Let ϕ0, . . . , ϕm−1 and ψ0, . . . , ψn−1 be elements of F . Then we
write

(ϕ0, . . . , ϕm−1) ⊆ (ψ0, . . . , ψn−1)

to mean ⋃
p∈Sm,k

⋂
i≤k

ϕpi ⊆
⋃

p∈Sn,k

⋂
i≤k

ψpi for every k < m (1.4)

where Sm,k is as in Proposition 1.2.10.7

Definition 1.2.12. A function c, defined on a subset S of an algebra F over W ,
that maps to R is called a partial measure if it satisfies the following properties:

1. c(x) ≥ 0;

2. If ϕ0, . . . , ϕm−1, ψ0, . . . , ψn−1 ∈ S and

(ϕ0, . . . , ϕm−1) ⊆ (ψ0, . . . , ψn−1),

then
m−1∑
k=0

c(ϕk) ≤
n−1∑
k=0

c(ψk);

3. W ∈ S and c(W ) = 1.

The following result is the point of introducing the above definitions.

Theorem 1.2.13 (Horn and Tarski 1947). Let c be a partial measure on a subset
S of an algebra F . Then there is a FA probability function c∗ on F that extends c.

Proof of Theorem 1.2.3

We now establish the necessity of coherence to avoid dominance.

Proof of Theorem 1.2.3. Let I be a generalized legitimate inaccuracy measure and
thus be defined by a Bregman distance Bϕ,µ (see Remark 1.2.5). We write B for
Bϕ,µ. Let S be the set of non-negative functions on F . Let E ⊆ S be the set of
coherent credence functions on F . Then clearly E is convex.

Let c be an incoherent credence function.
Case 1: I (c, w) =∞ for all w ∈ W . Then since I (vw, w) = 0 for all w ∈ W ,

any omniscient credence function weakly dominates c.
Case 2: I (c, w′) < ∞ for some w′ ∈ W . We show that there is a coherent

credence function c′ such that

I (c, w) > I (c′, w) for any w such that I (c, w) <∞.
7Note that if m− 1 > n− 1, this condition implies

⋃
p∈Sm,k

⋂
i≤k ϕpi

=
⋃

p∈Sn,k

⋂
i≤k ψpi

= ∅
for k ≥ n.
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Since vw′ ∈ E, we see that

B(E, c) ≤ B(vw′ , c) = I (c, w′) <∞.

Thus we can apply Theorem 1.2.8 to get a πc ∈ S such that

B(s, t) ≥ B(E, c) +B(s, πc) for every s ∈ E. (1.5)

In particular, (1.5) holds when s is the omniscient credence function at world w for
any w ∈ W ; and so we see that

I (c, w) ≥ B(E, c) + I (πc, w) (1.6)

for all w, where all numbers in (1.6) are finite whenever I (c, w) <∞.
Next we show that πc is in fact coherent. This is due to the following claim:

E is closed under loose convergence in µ-measure where µ is the counting measure
on P(F). To see this, let cn ∈ E for each n and c ∈ S. Assume cn → c loosely
in µ-measure. We show c ∈ E, i.e., c is coherent. Note c is coherent on F if and
only if c′ : F ∪ {W} → [0, 1] is coherent on F ∪ {W}, where c′ = c on F and
c′(W ) = 1. Thus it suffices to assume c and cn for all n are defined on F ∪ {W}
with c(W ) = cn(W ) = 1 for all n.

It is easy to see that loose convergence in the counting measure implies pointwise
convergence on F , and so

c(p) = lim
n→∞

cn(p) ∈ [0, 1]

for each p ∈ F ∪ {W}. To show c ∈ E, it suffices to show c can be extended to an
FA probability function on P(W ).

We first show c is a partial measure on F ∪ {W}. Definitions 1.2.12.1 and
1.2.12.3 clearly hold for c so we just need to show Definition 1.2.12.2 holds. Let
ϕ0, . . . , ϕm−1, ψ0, . . . , ψm′−1 ∈ F ∪ {W} and⋃

p∈Sm,k

⋂
i≤k

ϕpi ⊆
⋃

p∈Sm′,k

⋂
i≤k

ψpi

for every k < m. Since cn are coherent and thus extend to FA probability functions,
we have by Proposition 1.2.10 and Remark 1.2.9 that

m−1∑
k=0

cn(ϕk) =
m−1∑
k=0

cn(
⋃

p∈Sm,k

⋂
i≤k

ϕpi) ≤
m′−1∑
k=0

cn(
⋃

p∈Sm′,k

⋂
i≤k

ψpi) =
m′−1∑
k=0

cn(ϕk).

using that ⋃
p∈Sm,k

⋂
i≤k

ψpi =
⋃

p∈Sm′,k

⋂
i≤k

ψpi = ∅
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for k ≥ m′. Sending n to infinity and using the pointwise convergence of cn to c on
F ∪ {W} we obtain that

m−1∑
k=0

c(ϕk) ≤
m′−1∑
k=0

c(ψk).

Thus c is a partial measure on F ∪{W}. By Theorem 1.2.13, it follows that there is
an FA probability function c∗ on P(W ) that extends c and so c ∈ E, which concludes
the proof that E is closed under loose µ-convergence.

By Theorem 1.2.8, πc is the generalized B-projection of c onto E. Also, since

B(E, c) = inf
s∈E

(s, c) <∞,

there is a sequence {sn} ⊆ E such that B(sn, c) → B(E, c) by the definition of
infimum. By the definition of a generalized projection, sn  µ πc. Since E is closed
under loose convergence, it follows that πc ∈ E. Further, we see

B(E, c) ≥ B(πc, c) > 0,

since πc 6= c (as c is incoherent) and B(s, t) = 0 ⇐⇒ s = t (as µ is the counting
measure). So for every w such that I (c, w) <∞, we deduce that

I (c, w) ≥ B(E, c) + I (πc, w) > I (πc, w).

This proves that c is weakly dominated by πc, and is strongly dominated by πc if
I (c, w) <∞ for all w ∈ W .

1.3 The Countable Case: The Sufficiency of
Coherence

Unlike in the finite case, coherent credence functions on countably infinite opinion
sets can be strongly dominated.

Example 1.3.1. Let F = {{n ≥ N : n ∈ N} : N ∈ N} be an opinion set over N
(including zero). Let

c({n ≥ N}) =
1√
N + 1

.

Then c is coherent, in fact countably coherent (see Definition 1.3.5), but I (c, w) = ∞
for all w ∈ W when I is the generalized Brier score. So any omniscient credence
function strongly dominates c.

To deal with this problem, we restrict to certain classes of opinion sets and estab-
lish sufficient conditions—in terms of coherence and finite inaccuracy assumptions—
to avoid accuracy dominance. At points, our results will only apply to the gener-
alized Brier score. We conjecture that any such result extends to any generalized
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legitimate inaccuracy measure. In any case, this is the best possible restriction
since the Brier score has been defended by many—including Horwich (1982), Maher
(2002), Joyce (2009), and Leitgeb and Pettigrew (2010a)—as being a particularly
appropriate way to measure accuracy.

Throughout this section we assume F is countably infinite.

Countably Discriminating Opinion Sets

We begin by proving a sufficient condition for avoiding dominance on countably
discriminating opinion sets.

Definition 1.3.2. For F ⊆ P(W ), we define an equivalence relation ∼ on W such
that w ∼ w′ if and only if {p ∈ F : w ∈ p} = {p ∈ F : w′ ∈ p}. We call the set
of equivalence classes of W the quotient of W relative to F . If the quotient of W
relative to F is countable, then we call F countably discriminating.

The following characterization of the coherent credence functions on finite opin-
ion sets is due to de Finetti (1974). Recall VF denotes the set of omniscient credence
functions on F , which is finite when F is finite.

Theorem 1.3.3 (de Finetti 1974). c is a coherent credence function on a finite
opinion set F if and only if there are λw ∈ [0, 1] with

∑
vw∈VF λw = 1 such that

c(p) =
∑
vw∈VF

λwvw(p)

for all p ∈ F .

Theorem 1.3.3 is integral in the proof that coherence is sufficient to avoid dom-
inance in Theorem 1.1.8. The key insight to extending this direction of Theorem
1.1.8 is that de Finetti’s (1974) characterization of the coherent credence functions
on finite opinion sets extends to countably coherent credence functions on countably
discriminating opinion sets.

Definition 1.3.4. A σ-algebra over W is a subset F∗ ⊆ P(W ) such that:

1. W ∈ F∗;

2. if {pi}∞i=1 ⊆ F∗, then
⋃∞
i=1 pi ∈ F∗;

3. if p ∈ F∗, then W \ p ∈ F∗.

Definition 1.3.5. Let a credence function c be countably coherent if c extends to a
countably additive probability function on a σ-algebra containing F . That is, there
is a σ-algebra F∗ ⊇ F and c∗ : F∗ → [0, 1] such that:

1. c∗(p) = c(p) for all p ∈ F ;



13

2. c∗(
⋃∞
i=1 pi) =

∑∞
i=1 c

∗(pi) for {pi}∞i=1 ∈ F∗ with pi ∩ pj = ∅ for i 6= j;

3. c∗(W ) = 1.

Otherwise, a credence function is countably incoherent.

We now characterize the countably coherent credence functions on countably
discriminating opinion sets. The proof is almost identical to Predd et al.’s (2009)
proof of Theorem 1.3.3.

Proposition 1.3.6. Let F be a countably discriminating opinion set. Then a
credence function c is countably coherent if and only there are λw ∈ [0, 1] with∑

vw∈VF λw = 1 such that
c(p) =

∑
vw∈VF

λwvw(p)

for all p ∈ F .

Proof. We adapt the proof of Proposition 1 in Predd et al. 2009. Let F = {p1, p2 . . .}.
Let X be the collection of all nonempty sets of the form

⋂∞
i=1 p

∗
i where p∗i is either

pi or its complement. Then X partitions W . Also, X is in bijection with VF , the
set of omniscient credence functions.

Indeed, let f map vw to
⋂∞
i=1 p

∗
i where p∗i = pi if vw(pi) = 1 and p∗ = pci

otherwise. Then for each w, w ∈ f(vw) and so f(vw) ∈ X . Note f is onto. Indeed,
let w ∈

⋂∞
i=1 p

∗
i , where

⋂∞
i=1 p

∗
i ∈ X . Then f(vw) =

⋂∞
i=1 p

∗
i . Also, f is injective.

Indeed, assume f(vw) = f(vw′). Then

f(vw) =
∞⋂
i=1

p1
i =

∞⋂
i=1

p2
i = f(vw′)

for pji = pi or its complement for all i and j ∈ {1, 2}. If p1
i 6= p2

i for some i, then
without loss of generality we may assume p1

i = pi and p2
i = pci . So w ∈ p1

i but w /∈ p2
i

and thus w /∈
⋂∞
i=1 p

2
i . But w ∈

⋂∞
i=1 p

1
i by definition of f and so

⋂∞
i=1 p

1
i 6=

⋂∞
i=1 p

2
i ,

which is a contradiction. It follows that p1
i = p2

i for all i, but then by definition of
f , this implies vw(pi) = 1 if and only if vw′(pi) = 1 for all i and so vw = vw′ .

It is easy to see that since F is countably discriminating, VF is countable. It
follows that X is countable. Enumerate the elements of VF and X by vw1 , vw2 , . . .
and e1, e2, . . ., respectively, such that f−1(ej) = vwj

. We have that pi is the disjoint
union of ej such that ej ⊆ pi, or equivalently the ej where f−1(ej)(pi) = 1. Note i)
for any countably additive probability function µ on a σ-algebra containing F (and
thus containing X ) and any pi ∈ F :

µ(pi) =
∞∑
j=1

µ(ej)f
−1(ej)(pi).
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Now we prove the equivalence. Assume c is countably coherent. So c extends to
a countably additive probability function µ on a σ-algebra containing F . Then by
i),

c(pi) = µ(pi) =
∞∑
j=1

µ(ej)f
−1(ej)(pi)

for all pi ∈ F . But since µ(ej) are non-negative and sum to 1 (since the ej’s partition
W and µ is a countably additive probability function), we have that c has the form
stated.

Now assume c(pi) =
∑∞

j=1 λjvwj
(pi) for all i where

∑
j λj = 1. Let A be the

smallest σ-algebra onW containing F . Then it is easy to check that the function on
A defined by v̄wj

(p) = 1 if and only if w ∈ p extends vwj
and is a countably additive

probability function on A. Then
∑∞

j=1 λj v̄wj
is a countably additive probability

function on A since a countable sum of countably additive probability functions
with coefficients that sum to 1 is a countably additive probability function. Since

c(pi) =
∞∑
j=1

λjvwj
(pi) =

∞∑
j=1

λiv̄wj
(pi)

for all i, it follows that c extends to a countably additive probability function on a
σ-algebra containing F .

Recall that Example 1.3.1 shows that there are coherent credence functions on
countably discriminating opinion sets that are strongly dominated without further
assumptions. The following definition is used in the finite inaccuracy assumption
we make in the main theorem of this section.

Definition 1.3.7. For c a countably coherent credence function on a countably
discriminating opinion set F , let c =

∑
vw∈VF λwvw on F . Then for a countably

additive probability function c̄ extending c, we have

Ec̄I (c, ·) =
∑
vw∈VF

λwI (c, w).

In light of this, we call the sum
∑

vw∈VF λwI (c, w) the expected inaccuracy of c
relative to I .8

We can now prove a sufficient condition for avoiding dominance on countably
discriminating opinion sets.

Theorem 1.3.8. Let F be a countably discriminating opinion set and I a gener-
alized legitimate inaccuracy measure. If c is a countably coherent credence function
with finite expected inaccuracy relative to I , then c is not weakly dominated rela-
tive to I by any credence function d 6= c.

8Note we take the convention that 0 · ∞ = 0 as is typically done in defining integration of
extended real-valued functions.
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Proof. We adapt the proof of the second part of Theorem 1 in Predd et al. 2009.
Assume d weakly dominates c. Enumerate F and the omniscient credence func-
tions. Let I (c, w) = D(vw, c) for a generalized additive Bregman divergence D and
c =

∑∞
j=1 λjvwj

by Proposition 1.3.6. Then D(vw, c) − D(vw, d) ≥ 0 for all w by
weak dominance.

Now since

d(x, c(pi)) = ϕ(x)− ϕ(c(pi))− ϕ′(c(pi))(x− c(pi))

for any x ∈ [0, 1], we have

d(x, c(pi))− d(x, d(pi)) = ϕ(d(pi))− ϕ(c(pi)) + ϕ′(c(pi))c(pi)− ϕ′(d(pi))d(pi)

+ (ϕ′(d(pi))− ϕ′(c(pi))x = Ci + (ϕ′(d(pi))− ϕ′(c(pi))x
(1.7)

for any x ∈ [0, 1], where Ci is a constant depending on i.
Further, we make the following observation that follows from the assumption of

finite expected inaccuracy and weak dominance:

∞ > λj(D(vwj
, c)−D(vwj

, d)) = λj(
∞∑
i=1

d(vwj
, c(pi))− d(vwj

, d(pi))). (1.8)

for each j. In particular, λjD(vwj
, c) <∞ and λjD(vwj

, d) <∞ for each j.
Note D(

∑∞
j=1 λjvwj

, c) = 0 and d(
∑∞

j=1 λjvwj
(pi), c(pi)) = 0 for all i, so

D(
∞∑
j=1

λjvwj
, c)−D(

∞∑
j=1

λjvwj
, d) =

∞∑
i=1

d(
∞∑
j=1

λjvwj
(pi), c(pi))−d(

∞∑
j=1

λjvwj
(pi), d(pi)).

Continuing, using (1.7) and that
∑∞

i=1 λix = x for any x, we have

D(
∞∑
j=1

λjvwj
, c)−D(

∞∑
j=1

λjvwj
, d) =

∞∑
i=1

Ci + (ϕ′(d(pi))− ϕ′(c(pi))(
∞∑
j=1

λjvwj
(pi))

=
∞∑
i=1

∞∑
j=1

λj[Ci + (ϕ′(d(pi))− ϕ′(c(pi))vwj
(pi)]

=
∞∑
i=1

∞∑
j=1

λj[d(vwj
(pi), c(pi))− d(vwj

(pi), d(pi))].

(1.9)

We claim we can switch limits in (1.9). To do so we use the monotone convergence
theorem and the generalized dominance convergence theorem (see, e.g., Fabian and
Hannan 1985, p. 32). Let

gn(i) =
n∑
j=1

λj[d(vwj
(pi), c(pi))− d(vwj

(pi), d(pi))].

To apply the generalized dominance convergence theorem, we need to find hn(i) ≥ 0
such that:
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1. for each n,
∑∞

i=1 hn(i) <∞ and hn converges pointwise for each i;

2. |gn(i)| ≤ hn(i) for each i and n;

3.
∑

i limn hn(i) = limn

∑
i hn(i) <∞.

We set

hn(i) = max{
n∑
j=1

λjd(vwj
(pi), c(pi)),

n∑
j=1

λjd(vwj
(pi), d(pi))}.

Then
∞∑
i=1

hn(i) ≤
n∑
j=1

λj(D(vw, c) + D(vw, d)) ≤ 2
∞∑
j=1

λjD(vwj
, c) <∞

where we split up the inner sum using (1.8) and establish the last bound by as-
sumption of finite expected inaccuracy and weak dominance. Since, for each i,∑n

j=1 λjd(vwj
(pi), c(pi)) and

∑n
j=1 λjd(vwj

(pi), d(pi)) are bounded and increasing in
n (since d is bounded and

∑
j λj = 1), we establish three facts: i) hn(i) is bounded

and increasing in n for each i so ii) hn(i) converges pointwise for each i and iii)∑
i limhn(i) = limn

∑
i hn(i) by the monotone convergence theorem. In addition,∑

i limn hn(i) = limn

∑
i hn(i) <∞ since

lim
n

∑
i

hn(i) ≤ lim
n

∑
i

n∑
j=1

λjd(vwj
(pi), c(pi)) + λjd(vwj

(pi), d(pi))

=
∞∑
j=1

λj(
∞∑
i=1

d(vwj
(pi), c(pi)) + d(vwj

(pi), d(pi)))

=
∞∑
j=1

λj(D(vwj
, c) + D(vwj

, d)) <∞

where we split up the inner sum using (1.8) and establish the last bound using the
assumptions of finite expected inaccuracy and weak dominance. Moreover, it is easy
to check that |gn(i)| ≤ hn(i) for each n and i.

Putting everything together, by the generalized dominance convergence theorem,
we can switch the sum in j and the sum in i in (1.9). Thus we get:

0 ≥ D(
∞∑
j=1

λjvwj
, c)−D(

∞∑
j=1

λjvwj
, d) =

∞∑
i=1

∞∑
j=1

λj[d(vwj
, c(pi))− d(vwj

, d(pi))]

=
∞∑
j=1

λj

∞∑
i=1

d(vwj
, c(pi))− d(vwj

, d(pi))

=
∞∑
j=1

λj(D(vwj
, c)−D(vwj

, d)) ≥ 0
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where we split up the inner sum to get the last line by (1.8) and establish the
last bound by assumption of weak dominance. So 0 = D(c, c) = D(c, d). We can
therefore conclude that c = d since D(c, d) = 0 if and only if c = d.

Point-Finite and Negation-Compact Opinion Sets

In this section, we prove Theorem 1.1.8 for a certain subclass of countably dis-
criminating opinion sets. However, for this result, we will need to restrict to the
generalized Brier score (see the beginning of Section 1.3) which we denote by B.
We prove sufficient conditions for avoiding dominance on various other classes of
opinion sets along the way.

I

First, we show that we can weaken finite expected inaccuracy in Theorem 1.3.8 to
somewhere finitely inaccurate on point-finite opinion sets.

Definition 1.3.9. Let c be a credence function on an opinion set F . Then we say
c is somewhere finitely inaccurate relative to I if I (c, w) <∞ for some w ∈ W .

Definition 1.3.10. We say F ⊆ P(W ) is point-finite if |{p ∈ F : w ∈ p}| <∞ for
each w ∈ W .

Proposition 1.3.11. Let F be a point-finite opinion set and c a credence function
on F . If c is countably coherent and somewhere finitely inaccurate relative to B,
then c is not weakly dominated relative to B.

Proof. The proof is similar to the proof of Theorem 1.3.8, but we use a differ-
ent criterion to switch limits. Assume d weakly dominates c. Note i) c is some-
where finitely inaccurate if and only if B(c, w) < ∞ for all w ∈ W if and only if∑∞

i=1 c(pi)
2 < ∞. It follows by weak dominance that B(d, w) < ∞ for all w ∈ W

and therefore
∑∞

i=1 d(pi)
2 <∞. To simplify notation, let ci := c(pi) and di := d(pi).

Let B(c, w) = D(vw, c) for D a generalized additive Bregman divergence.
By a similar derivation as in Theorem 1.3.8, we have that

D(
∞∑
j=1

λjvwj
, c)−D(

∞∑
j=1

λjvwj
, d) =

∞∑
i=1

∞∑
j=1

λj[(vwj
(pi)− ci)2 − (vwj

(pi)− di)2]

(1.10)

=
∞∑
i=1

(
∑

j:wj /∈pi

λj)(c
2
i − d2

i ) + (
∑

j:wj∈pi

λj)((1− ci)2 − (1− di)2)

=
∞∑
i=1

c2
i − d2

i + 2(
∑

j:wj∈pi

λj)(di − ci)

=
∞∑
i=1

−c2
i − d2

i + 2(
∑

j:wj∈pi

λj)di
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since ci =
∑

j:wj∈pi λj. We have
∑∞

i=1 c
2
i + d2

i <∞ by i). Thus

0 ≤
∞∑
i=1

2(
∑

j:wj∈pi

λj)di <∞ (1.11)

as

0 ≥ D(
∞∑
j=1

λjvwj
, c)−D(

∞∑
j=1

λjvwj
, d).

Having established (1.11), we claim we can use the dominated convergence the-
orem to switch limits in (1.10). Indeed,

∞∑
i=1

N∑
j=1

λj[(vwj
−c(pi))2−(vwj

−d(pi))
2] =

∞∑
i=1

(
∑

1≤j≤N

λj)(c
2
i−d2

i )+2(
∑

j:wj∈pi
1≤j≤N

λj)(di−ci).

Letting
gN(i) = (

∑
1≤j≤N

λj)(c
2
i − d2

i ) + 2(
∑

j:wj∈pi
1≤j≤N

λj)(di − ci)

and noting that −(
∑

j:wj∈pi
1≤j≤N

λj)ci ≥ −c2
i since ci =

∑
j:wj∈pi λj, we see that

|gN(i)| ≤ 2c2
i + d2

i + 2(
∑

j:wj∈pi

λj)di.

Each of ci, di, and (
∑

j:wj∈pi λj)di is summable in i. So, the dominated convergence
theorem applies and we can switch limits.

Thus we have

0 ≥ D(
∞∑
j=1

λjvwj
, c)−D(

∞∑
j=1

λjvwj
, d)

=
∞∑
j=1

λj

∞∑
i=1

[(vwj
(pi)− c(pi))2 − (vwj

(pi)− d(pi))
2]

=
∞∑
j=1

λj(D(vw, c)−D(vw, d)) ≥ 0

where we used that c and d are both finitely inaccurate for each w ∈ W to break
up the summation in the second line. Thus we conclude that c = d as D(c, d) = 0
if and only if c = d.
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II

Next, we give sufficient conditions for avoiding strong dominance on negation-
compact9 opinion sets and weak dominance on countably discriminating negation-
compact opinion sets. Both results hold for any generalized legitimate inaccuracy
measure.

Definition 1.3.12. Let F ⊆ P(W ). Let f(n) ∈ {0, 1} and set pf(n)
n = pn if f(n) = 0

and p
f(n)
n = pcn if f(n) = 1. Then we say F is negation-compact if for any choice

of {pn}∞n=1 ⊆ F and f : N → {0, 1}, if
⋂N
n=1 p

f(n)
n is nonempty for every N , then⋂∞

n=1 p
f(n)
n is nonempty.

First, we establish that coherent credence functions (without any finite inac-
curacy assumption) are not strongly dominated on negation-compact opinion sets.
Unfortunately, we cannot prove a characterization result because Theorem 1.2.3 does
not entail that incoherent credence functions are strongly dominated on negation-
compact opinion sets. In the proof of the result, we use Konig’s lemma (see, e.g.,
Hrbacek and Jech 1999, Sec. 12.3) and assume basic knowledge of trees.

Lemma 1.3.13 (Konig’s lemma). Any infinite finitely branching tree has an infinite
branch.

Proposition 1.3.14. Let F be a negation-compact opinion set and I a generalized
legitimate inaccuracy measure. If c is a coherent credence function on F , then c is
not strongly dominated relative to I .

Proof. Let I (c′, w) =
∑∞

i=1 d(vw(pi), c
′(pi)) for some enumeration of F and one-

dimensional Bregman divergence d. Let In(c′, w) =
∑n

i=1 d(vw(pi), c
′(pi)) for each

n ∈ N, w ∈ W , and credence function c′ on F . Consider a credence function d 6= c.
Define

T n = {(vw(p1), . . . , vw(pn)) : Ik(w, c) < Ik(w, d) for some k ≥ n,w ∈ W}

and T = e∪
⋃∞
n=1 T

n, where e is the empty sequence. For each s, t ∈ T , we set s < t
if and only if s is an initial sequence of t, and we set the height of t ∈ T to be the
length of the tuple. Then T is a binary tree.

We claim T is infinite. Fix n ∈ N. Then there is a t ∈ T with height n if and
only if Tn 6= ∅ if and only if Ik(c, w) < Ik(d, w) for some k ≥ n and w ∈ W . Let
k be the maximum of n and the smallest i such that c(pi) 6= d(pi). Then since c
restricted to any subset of F is coherent, by Theorem 1.1.8, Ik(c, w

′) < Ik(d, w
′)

for some w′ ∈ W and so (vw′(p1), . . . , vw′(pn)) ∈ T n.
By Lemma 1.3.13, there exists an infinite branch

B =
∞⋃
n=1

{(vwn(p1), . . . , vwn(pn))}

9This notion is introduced by Borkar et al. (2004), though they did not give a name to it.
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through T , where

(vwn(p1), . . . , vwn(pn)) < (vwm(p1), . . . , vwm(pm))

whenever n < m. For each i, let p∗i = pi if vwi
(pi) = 1 and p∗i = pci if vwi

(pi) = 0.
Then wn ∈

⋂n
i=1 p

∗
i since vwi

(pi) = 1 if and only if vwn(pi) = 1 for i < n as
(vwi

(p1), . . . , vwi
(pi)) < (vwn(p1), . . . , vwn(pn)). Thus

⋂n
i=1 p

∗
i 6= ∅ for each n and so

by negation-compactness there is some w ∈
⋂∞
i=1 p

∗
i . Then

(vw(p1), . . . , vw(pn)) = (vwn(p1), . . . , vwn(pn)) ∈ T n

for each n ∈ N. By the definition of T n, we have

Ikn(w, c) < Ikn(w, d)

for some kn ≥ n. Sending n to infinity, we see I (w, c) ≤ I (w, d) and thus d cannot
strongly dominate c.

Next, we use a result of Borkar et al. (2004) and Theorem 1.3.8 to show that
coherence and finite expected inaccuracy are sufficient for avoiding weak dominance
on countably discriminating negation-compact opinion sets.

Theorem 1.3.15 (Borkar et al. 2004). Let F be negation-compact. If c is coherent
on F , then c is countably coherent on F .

Corollary 1.3.16. Let F be a countably discriminating negation-compact opinion
set and I a generalized legitimate inaccuracy measure. If c is a coherent credence
function on F with finite expected inaccuracy relative to I , then c is not weakly
dominated relative to I .

Proof. Immediate from Theorems 1.3.8 and 1.3.15.

III

Putting together Theorem 1.2.3, Proposition 1.3.11, Proposition 1.3.14 and Theo-
rem 1.3.15, we get the following characterization result showing that the accuracy
argument for probabilism extends to point-finite negation-compact opinion sets.

Theorem 1.3.17. Let F be a point-finite negation-compact opinion set and c a
credence function on F . Then the following are equivalent:

1. c is not strongly dominated relative to B;

2. c is not weakly dominated relative to B;

3. c is coherent;

4. c is coherent and somewhere finitely inaccurate relative to B.
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Proof. Assume c is coherent and somewhere finitely inaccurate relative to B. Then
by Theorem 1.3.15, since F is negation-compact, c is countably coherent. Since F
is point-finite, Proposition 1.3.11 entails that c is not weakly dominated. So (4)
implies (2). By Theorem 1.2.3, (2) implies (3), and by Theorem 1.3.14 (3) implies
(1).

As for the implication from (1) to (4), assume (4) does not hold. Thus c is either
incoherent and somewhere finitely inaccurate or B(c, w) =∞ for all w ∈ W . Since
F is point-finite, it follows that B(vw, w

′) < ∞ for all w,w′ ∈ W . Thus, in the
second case, c is strongly dominated relative to B. If c is incoherent and somewhere
finitely inaccurate, it is easy to check by the assumption of point-finiteness that
B(c, w) < ∞ for all w ∈ W . Thus by Theorem 1.2.3, c is strongly dominated
relative to B, proving that (1) implies (4).

As a corollary, on point-finite negation-compact opinion sets, coherent credence
functions cannot be infinitely inaccurate.

Corollary 1.3.18. Let F be a point-finite negation-compact opinion set and c a
credence function on F . If c is coherent, then I (c, w) <∞ for all w ∈ W .

Example 1.3.1 shows that Theorem 1.3.17 fails if negation-compactness is dropped,
but it is open whether (1), (2), and (4) remain equivalent in this case. Further, it is
open whether Theorem 1.3.17 holds when point-finiteness is dropped instead, but
Proposition 1.3.14 gives us a hint.

Partitions

While partitions are not negation-compact, we can prove Theorem 1.1.8 when F
is a countably infinite partition of W .10 In parts of the existing literature (e.g., in
Joyce 2009), credence functions are assumed to be defined on a (finite) partition of
W to begin with, and so such a result might be especially relevant to extending the
accuracy argument for probabilism to countably infinite opinion sets.

For this result, we assume inaccuracy is measured with the generalized Brier
score B (see the beginning of Section 1.3). The characterization follows from two
lemmas.

Lemma 1.3.19. Let F be a countably infinite partition and c a coherent credence
function on F . If c is strongly dominated relative to B, then there is a finite opinion
set F ′ and a coherent credence function c′ on F ′ that is strongly dominated relative
to B11.

10It has been noted that de Finetti’s (1974) original proof of Theorem 1.1.8 assuming the Brier
score extends to countably infinite opinion sets. However, the only proof we’ve seen is a sketch of
the necessity of coherence for countably infinite partitions in Joyce (1998). Further, such a claim
could not be true for arbitrary countable opinion sets as Example 1.3.1 shows.

11Here we mean B to be the Brier score which takes in credences on a finite opinion set.
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Proof. Let F = {p1, p2, . . .} and enumerate VF such that vwn(pi) = 1 if and only if
i = n. Let d be a credence function, and di := d(pi) and ci := c(pi). Then

I (c, wn)−I (d, wn) =
∑
m6=n

c2
m + (1− cn)2 −

∑
m 6=n

d2
m − (1− dn)2

=
∑
m

c2
m −

∑
m

d2
m + 2(dn − cn).

Thus d strongly dominates c if and only if

dn >

∑
m d

2
m −

∑
m c

2
m

2
+ cn

for all n. Also, notice that c is coherent if and only if
∑

m cm ≤ 1, so
∑

m c
2
m < ∞

if c is coherent.
Now we note three things. 1) If c is strongly dominated by some credence function

d, then c is strongly dominated by a coherent credence function by Theorem 1.2.3. 2)
If c is strongly dominated by a coherent credence function d, then

∑
m d

2
m <

∑
m c

2
m.

Indeed, if
∑

m d
2
m >

∑
m c

2
m, then since dn → 0 and cn → 0, we can find a K such

that
2|(dn − cn)| < |

∑
m

c2
m −

∑
m

d2
m|

for n ≥ K. Thus for n ≥ K,∑
m

c2
m −

∑
m

d2
m + 2(dn − cn)

is not greater than 0 and so d does not strongly dominate c. If
∑

m d
2
m =

∑
m c

2
m,

then dn > cn for all n by weak dominance, which contradicts that
∑

m d
2
m =

∑
m c

2
m.

3) If c is strongly dominated by a coherent credence function d and
∑

m d
2
m <

∑
m c

2
m,

then c is strongly dominated by a coherent d which is 0 at all but finitely many pi.
Indeed, assume c is strongly dominated by some coherent credence function d

with
∑

m d
2
m <

∑
m c

2
m. Let K be such that∑

m d
2
m −

∑
m c

2
m

2
+ cn < 0

for all n ≥ K. We can find such a K since
∑

m d2m−
∑

m c2m
2

is a fixed negative number
and cn → 0. Then let dn = dn for n < K and dn = 0 for n ≥ K. Then since∑

m dm
2
<

∑
d2
m,

dn >

∑
m d

2
m −

∑
m c

2
m

2
+ cn

for all n implies

dn >

∑
m dm

2 −
∑

m c
2
m

2
+ cn

for all n. This establishes the claim.
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Assume toward a contradiction that c is strongly dominated by a credence func-
tion d. By 1), 2), and 3) above, we may assume d is coherent,

∑
m d

2
m <

∑
m c

2
m,

and d(pi) = 0 for all but finitely many i. Let K be such that dn = 0 if n ≥ K. Then
since d strongly dominates c we know

dn >

∑
m d

2
m −

∑
m c

2
m

2
+ cn for n < K;

0 >

∑
m d

2
m −

∑
m c

2
m

2
+ cn for n ≥ K.

Since cn → 0 and
∑

m d2m−
∑

m c2m
2

is some fixed negative number, in fact we have that
the tail terms are bounded away from zero uniformly. That is,

−ε >
∑

m d
2
m −

∑
m c

2
m

2
+ cn for n ≥ K

for some ε > 0.
Similarly, since there are only finitely many constraints, we can find an ε′ > 0

such that
dn − ε′ >

∑
m d

2
m −

∑
m c

2
m

2
+ cn for n < K

Now pick K ′ > K such that 1)
∑∞

K′+1 c
2
n

2
< min{ε,ε′}

2
and 2)

∑K′

m=1 c
2
m >

∑K′

m=1 d
2
m

(which can be done since
∑

m c
2
m >

∑
m d

2
m). Then dn satisfies

dn >

∑K′

m=1 d
2
m −

∑K′

m=1 c
2
m

2
+ cn for n < K;

0 >

∑K′

m=1 d
2
m −

∑K′

m=1 c
2
m

2
+ cn for n ≥ K.

Now consider the finite opinion set F = {p1, . . . , pK′} over the same set W of
worlds. Then these equations show that the credence function d = (d1, . . . , dK′)
strongly dominates the coherent credence function c = (c1, . . . , cK′) when restricting
to {vw1 , . . . , vwK′} (where the omniscient credences are also restricted to F). For
worlds wn with n > K ′ we note that

I (wn, c)−I (wn, d) =
K′∑
m=1

c2
m −

K′∑
m=1

d2
m > 0

by choice of K ′. So c is a coherent credence function on a finite opinion set that is
strongly dominated relative to B.

Lemma 1.3.20. Let F be a countably infinite partition of W and c a coherent
credence function on F . If c is weakly dominated relative to B, then there is a
coherent c′ on F which is strongly dominated relative to B.
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Proof. Let F = {p1, p2, . . .} and enumerate VF such that vwn(pi) = 1 if and only if
i = n. Let d be a credence function, and di = d(pi) and ci = c(pi). Then by the
same reasoning in Lemma 1.3.19, d weakly dominates c if and only if

dn ≥
∑

m d
2
m −

∑
m c

2
m

2
+ cn

for all n with a strict inequality for some n. Also, notice that c is coherent if and
only if

∑
m cm ≤ 1 so

∑
m c

2
m <∞ if c is coherent.

Now we note three things (repeating the reasoning in Lemma 1.3.19). 1) If
c is weakly dominated by an incoherent credence function d, then c is strongly
dominated by a coherent credence function by Theorem 1.2.3 as I (c, w) < ∞ for
all w ∈ W . Thus, by Lemma 1.3.19, c can only be weakly dominated by a coherent
credence function. 2) If c is weakly dominated by a coherent credence function d,
then

∑
m d

2
m <

∑
m c

2
m. Indeed, if

∑
m d

2
m >

∑
m c

2
m, since dn → 0 and cn → 0, we

can find a K such that

2|(dn − cn)| < |
∑
m

c2
m −

∑
m

d2
m|

for n ≥ K. Thus for n ≥ K,∑
m

c2
m −

∑
m

d2
m + 2(dn − cn)

is not greater than or equal to 0 and so d does not weakly dominate c. If
∑

m d
2
m =∑

m c
2
m, then dm ≥ cm for each m and dm > cm for some m. But then

∑
m d

2
m 6=∑

m c
2
m. 3) If c is weakly dominated by a coherent credence function d with

∑
m d

2
m <∑

m c
2
m, then c is weakly dominated by a coherent d which is 0 at all but finitely

many pi. This follows by the same reasoning as in Lemma 1.3.19.
Assume toward a contradiction that c is weakly dominated by a credence function

d. By 1), 2), and 3) above we may assume d is coherent,
∑

m d
2
m <

∑
m c

2
m and

d(pi) = 0 for all but finitely many i. Let K be such that d(pi) = 0 if i ≥ K.
Now, since d weakly dominates c we know

dn ≥
∑

m d
2
m −

∑
m c

2
m

2
+ cn for n < K

0 ≥
∑

m d
2
m −

∑
m c

2
m

2
+ cn for n ≥ K

with strict inequality for some n. Since cn → 0 and
∑

m d2m−
∑

m c2m
2

is some fixed
negative number, in fact we have that the tail terms are bounded away from zero if
we adjust K to be larger as need be. That is,

−δ >
∑

m d
2
m −

∑
m c

2
m

2
+ cn for n ≥ K,
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and even with a possible adjustment of K we have that

dn ≥
∑

m d
2
m −

∑
m c

2
m

2
+ cn for n < K.

Now, let I ⊆ {1, . . . , K} be such that

di =

∑
m d

2
m −

∑
m c

2
m

2
+ ci

for i ∈ I. Note since ∑
m d

2
m −

∑
m c

2
m

2
< 0,

this implies that ci 6= 0 for each i ∈ I. Now, we will pick an ε > 0 that satisfies the
following constraints:

1. ci − ε ≥ 0 for each i ∈ I.

2. For all i ∈ I,

di >

∑
m d

2
m −

∑
n/∈I c

2
n −

∑
n∈I(cn − ε)2

2
+ ci − ε.

3. For all i ∈ {1, . . . , K} \ I,

di >

∑
m d

2
m −

∑
n/∈I c

2
n −

∑
n∈I(cn − ε)2

2
+ ci.

4. For all i ≥ K,

0 >

∑
m d

2
m −

∑
n/∈I c

2
n −

∑
n∈I(cn − ε)2

2
+ ci.

If we find such an ε > 0, then by 1-4, we can set c̄n = cn for n /∈ I and c̄n = cn − ε
for n ∈ I and get a coherent credence function (since

∑
i c̄i ≤ 1 still) that is strongly

dominated by d. Indeed, 2 ensures that d is strictly more accurate than c̄ at worlds
i ∈ I, 3 ensures that d is strictly more accurate than c̄ at worlds i ∈ {1, 2, . . . , K}\I,
and 4 ensures that d is strictly more accurate than c̄ at worlds i ≥ K.

We claim we can find an ε > 0 since doing so requires satisfying a finite number
of satisfiable constraints. To satisfy 1, we just need to pick 0 < ε < ci for all i ∈ I
which is possible since ci > 0 and I is finite.

As for 2, since for all i ∈ I, we have

di =

∑
m d

2
m −

∑
m c

2
m

2
+ ci

the inequality in 2 holds for all i if and only if we can find an ε that

0 > (
∑
i∈I

ci)ε−
|I|ε2

2
− ε ⇐⇒ 0 >

∑
i∈I

ci − 1− |I|ε
2
⇐⇒ ε >

2(
∑

i∈I ci − 1)

|I|
.
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Since c is coherent, we know that
∑

i∈I ci − 1 ≤ 0 and so this just amounts to
satisfying ε > 0.

As for 3, since for all i ∈ {1, 2, . . . , K} \ I, we have

di >

∑
m d

2
m −

∑
m c

2
m

2
+ ci

and we can find a δ′ > 0 such that, for all i ∈ I,

di − δ′ >
∑

m d
2
m −

∑
m c

2
m

2
+ ci.

Then 3 holds if
(
∑
i∈I

ci)ε−
|I|ε2

2
<
δ′

2
.

Clearly we can find such an ε > 0.
Finally, as in 3, since

−δ >
∑

m a
2
m −

∑
m c

2
m

2
+ bn for n ≥ K

we can satisfy 4 if we make

(
∑
i∈I

ci)ε−
|I|ε2

2
<
δ

2
.

Again, clearly we can find such an ε > 0.
Thus we see that satisfying 1−4 requires a finite number of satisfiable constraints

and so we can find such an ε > 0 proving the lemma.

We can now prove the generalization of Theorem 1.1.8 to countably infinite
partitions.

Theorem 1.3.21. Let F be a countably infinite partition of W and c a credence
function on F . Then the following are equivalent:

1. c is not strongly dominated relative to B;

2. c is not weakly dominated relative to B;

3. c is coherent.

Proof. Theorem 1.1.8, Lemma 1.3.19 and Lemma 1.3.20 together imply that if c is
coherent, then c is not weakly dominated relative to B. Clearly if c is not weakly
dominated relative to B, then c is not strongly dominated relative to B. Assume
c is incoherent. Then either B(c, w) < ∞ for all w ∈ W or B(c, w) = ∞ for all
w ∈ W . In the former case, Theorem 1.2.3 implies c is strongly dominated. Since
each omniscient credence function is finitely inaccurate at each world, in the latter
case, c is strongly dominated by any omniscient credence function.
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Sufficient Necessary

Countably discriminating
finite expected inaccuracy

+
countably coherent

somewhere finitely inaccurate
+

coherent

Point-finite
somewhere finitely inaccurate

+
countably coherent

somewhere finitely inaccurate
+

coherent

Negation-compact
(for strong dominance) coherent ?

Countably discriminating
& negation-compact

finite expected inaccuracy
+

coherent

somewhere finitely inaccurate
+

coherent

Point-finite
& negation-compact coherent coherent

Partition coherent coherent

Figure 1.3.1: a summary of the countable case

Remark 1.3.22. Proposition 1.3.14, Theorem 1.3.17 and Theorem 1.3.21 are re-
lated to Theorem 1 of Schervish et al. 2014. However, 1) their assumptions are in
some ways stronger and in some ways weaker, and 2) Schervish et al. (2014) only es-
tablish that coherence is sufficient for avoiding strong dominance—unlike Theorems
1.3.17 and 1.3.21, their results do not show that coherence is sufficient for avoid-
ing even weak dominance and that being incoherent precludes one from avoiding
dominance.

1.4 The Uncountable Case
So far we have been concerned with credences defined on countably infinite opinion
sets. We now consider what can be said in favor of probabilism when credences are
defined on uncountable opinion sets. When extending from the finite to the count-
ably infinite setting, we kept the additivity requirement for legitimate inaccuracy
measures. Similarly, we suggest that the natural generalization of the additivity
requirement to the uncountable case is defining, when possible, inaccuracy by in-
tegration against a uniform measure. Here we prove a general result concerning
inaccuracy defined by integration against any finite measure.

Due to the measure theoretic construction of the inaccuracy measures we con-
sider, we restrict our attention to measurable credence functions and equate credence
functions that are equal almost everywhere. In some measure spaces, like the count-
ing measure space underlying generalized legitimate inaccuracy measures, we lose
nothing since every credence function is measurable and only the empty set is mea-
sure zero. However, in other cases, these assumptions are worth evaluating. We
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begin by extending the accuracy framework to the measure theoretic setting.

Definition 1.4.1. Let (F ,A, µ) be a measure space and c : F → R+. If c is A-
measurable and µ({p : c(p) /∈ [0, 1]}) = 0, we call c a µ-credence function. We say a
µ-credence function c is µ-coherent if there is a coherent (in the usual sense) credence
function c′ on F with c = c′ µ-a.e. We say a µ-credence function is µ-incoherent if
there is no coherent credence function c′ such that c = c′ µ-a.e.

Definition 1.4.2. Let F be an opinion set (of arbitrary cardinality) over a set W
of worlds. Let (F ,A, µ) be a σ-finite measure space over the opinion set F . Let C
be the space of all µ-credence functions. Assume I : C ×W → [0,∞] is such that,
for all (c, w) ∈ C ×W , we have

I (c, w) = Bϕ,µ(vw, c)

where Bϕ,µ is a Bregman distance relative to ϕ12 and (F ,A, µ). In particular, each
vw is a µ-credence function. Then we call I an integral inaccuracy measure on
(F ,A, µ).

We now prove a dominance result about integral inaccuracy measures. The proof
is essentially a measure-theoretic version of the proof of Theorem 1.2.3.

Theorem 1.4.3. Let I be an integral inaccuracy measure on a finite13 measure
space (F ,A, µ). Then for every µ-credence function c, if c is µ-incoherent, then
there is a µ-coherent µ-credence function c′ that strongly dominates c relative to I .

Proof. Let I (c, w) = Bϕ,µ(vw, c). We write B for Bϕ,µ. Let S be the set of non-
negative A-measurable functions on F . Let E ⊆ S be the set of µ-coherent µ-
credence functions over F . Then clearly E is convex. Let c be a µ-incoherent
µ-credence function. Because µ is finite and d is bounded,

B(E, c) <∞.

Thus we can apply Theorem 1.2.8 to get a πc ∈ S such that

B(s, t) ≥ B(E, c) +B(s, πc) for every s ∈ E. (1.12)

In particular, (1.12) holds when s is an omniscient credence function at world w for
each w, so we obtain

I (w, c) ≥ B(E, c) + I (w, πc) (1.13)

for all w, where all numbers in (1.13) are finite. We show that πc is in fact a µ-
coherent µ-credence function. It suffices to show that πc is µ-a.e. equal to a coherent

12Again, we assume the one-dimensional Bregman divergence d generated by ϕ is bounded.
13We may replace finite with σ-finite if in addition i) the µ-coherent µ-credence functions are

closed under loose convergence in µ-measure and ii) we weaken the theorem to a two-part theorem
as in Theorem 1.2.3. µ being finite is sufficient for i) and implies I (c, w) < ∞ for all c ∈ C and
w ∈W .
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credence function on F (since πc ∈ S, it is A-measurable). To do so, we prove the
following claim: E is closed under loose-convergence in µ-measure.

To see this, let cn ∈ E for each n and c ∈ S. Assume cn → c loosely in µ-
measure. The first thing to notice is, since µ is finite, loose µ-convergence implies
µ-a.e. convergence on a subsequence {an} ⊆ {n}, so that

c(p) = lim
n→∞

can(p) ∈ [0, 1]

for each p ∈ G with µ(Gc) = 0. Since the can are µ-coherent, we can change each
can on a (measurable) measure zero set Xn to get coherent µ-credence functions can .
Further, we replace G with G \ (∪∞n=1Xn). Assuming these adjustments have been
made, we have that can → c on G with µ(Gc) = 0 and each can is coherent. We
now show c ∈ E by showing it is equal to a coherent credence function on F when
restricting to G.

First, we extend c (resp. can) to c (resp. can), where c (resp. can) is a credence
function on G ∪ {W} such that c = c (resp. can = can) on G and c(W ) = 1
(resp. can(W ) = 1). Then notice that c (resp. can) is coherent on G if and only
if c (resp. can) is coherent on G ∪{W}. Thus we work with c and can instead noting
that c = limn can on G ∪ {W}. To show c ∈ E, we first show c is a partial measure
on G ∪ {W}.

Definitions 1.2.12.1 and 1.2.12.3 clearly hold for c so we just need to show Defi-
nition 1.2.12.2 holds. Let ϕ0, . . . , ϕm−1, ψ0, . . . , ψm′−1 ∈ G ∪ {W} and⋃

p∈Sm,k

⋂
i≤k

ϕpi ⊆
⋃

p∈Sm′,k

⋂
i≤k

ψpi

for every k < m. Since can are coherent on G ∪ {W} and thus extend to measures
on an algebra containing G ∪ {W}, we have by Corollary 1.2.10 that

m−1∑
k=0

can(ϕk) =
m−1∑
k=0

can(
⋃

p∈Sm,k

⋂
i≤k

ϕpi) ≤
m′−1∑
k=0

can(
⋃

p∈Sm′,k

⋂
i≤k

ψpi) =
m′−1∑
k=0

can(ϕk)

using that ⋃
p∈Sm,k

⋂
i≤k

ψpi =
⋃

p∈Sm′,k

⋂
i≤k

ψpi = ∅

for k ≥ m′. Sending n to infinity and using the pointwise convergence of can to c on
G ∪ {W} we conclude that

m−1∑
k=0

c(ϕk) ≤
m′−1∑
k=0

c(ψk).

Thus c is a partial measure on G ∪ {W}. By Theorem 1.2.13, it follows that there
is an FA probability function c∗ on A(F) (the smallest algebra containing F) such
that c∗ = c on G ∪ {W}. Thus c∗|F is a coherent credence function on F and

c = c̄ = c∗|F
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µ-a.e. (specifically off Gc). Further, we already assumed c is A-measurable and
{p : c(p) ∈ [0, 1]} ⊆ G. Thus c is a µ-coherent µ-credence function.

The proof is finished just as in the proof of Theorem 1.2.3. By Theorem 1.2.8,
πc is the generalized projection of c onto E. Also, since

B(E, c) = inf
s∈E

(s, c) <∞

there is a sequence {sn} ⊆ E such that B(sn, c) → B(E, c) by the definition of
infimum. By the definition of a generalized projection, sn  µ πc. Since E is closed
under loose convergence, it follows that πc ∈ E. Further, since c is µ-incoherent
we know c 6= πc (up to µ-a.e. equivalence) so we see B(E, c) ≥ B(πc, c) > 0 since
B(s, t) = 0 if and only if s = t µ-a.e. Since I (w, c) <∞ for all w, we deduce that

I (w, c) ≥ B(E, c) + I (w, πc) > I (w, πc)

for all w ∈ W . This proves that c is strongly dominated by πc, and we are done.

We now show one direction of the accuracy dominance result in Walsh 2019
follows from Theorem 1.4.3. We first recall his result.

Theorem 1.4.4 (Walsh 2019). Let F be a countably infinite opinion set. Let

I (w, c) =
∞∑
i=1

2−i(vw(pi)− c(pi))2. (1.14)

Then:

1. if c is incoherent, it is strongly dominated relative to I by a coherent credence
function;

2. if c is coherent, it is not weakly dominated relative to I by any credence
function d 6= c.

As a corollary to Theorem 1.4.3, we prove the first part of Walsh’s (2019) result.
We also allow the coefficients in (1.14) to be any an ∈ (0, 1] with

∑
n an <∞.

Corollary 1.4.5. Let F be a countably infinite opinion set. Let

I (c, w) =
∞∑
i=1

an(vw(pi)− c(pi))2

with an ∈ (0, 1] and
∑

n an < ∞. Then if c is incoherent, it is strongly dominated
relative to I by a coherent credence function.

Proof. We take the measure space (F ,P(F), µ) over F where

µ(A) =
∑
{i:pi∈A}

ai <∞
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for each A ∈ P(F). Note (x− y)2 = x2 + y2 − 2xy so letting ϕ(x) = x2

(x− y)2 = ϕ(x)− ϕ(y)− ϕ′(y)(x− y).

Also note ϕ is strictly convex and differentiable on (0,∞). Thus we have that for
all (c, w) ∈ C ×W ,

I (c, w) = Bϕ,µ(c, w)

for Bϕ,µ a Bregman distance relative to ϕ and the finite measure space (F ,P(F), µ).
Thus the conditions in Theorem 1.4.3 hold. The last thing to notice is that, as with
the counting measure, two credence functions are equal µ-a.e. if and only if they are
equal everywhere.

Remark 1.4.6. Corollary 1.4.5 can be generalized to allow any bounded one-
dimensional Bregman divergence in place of d(x, y) = (x − y)2. The proof is es-
sentially the same.

Here is an example of how Theorem 1.4.3 can be used to give an accuracy ar-
gument in a concrete uncountable setting. Assume we have a coin with unknown
bias θ ∈ [0, 1] and a set of propositions of the form a ≤ θ ≤ b for each a, b ∈ [0, 1].
Then a credence function on this uncountable opinion set can be represented by a
function

c : X → [0, 1]

where X = {(a, b) : 0 ≤ a ≤ b ≤ 1} ⊆ [0, 1]2. We put the Lebesgue measure λ on X
to generalize the additive constraint used in the countable setting. We let

I (c, w) =

∫
d(vw(x), c(x))λ(dx)

for a bounded one-dimensional divergence d. Then the assumptions of Theorem
1.4.3 hold so we get the following dominance result: for any λ-credence function c,
if c is a λ-incoherent, then there is a λ-coherent λ-credence function that strongly
dominates c.
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Chapter 2

Point-Finitely Generated
Algebras of Sets

In the general topology literature, characterizing the topologies that have a point-
countable base (each point is in at most countably many sets from the base) or a
σ-point-finite base (a countable union of point-finite collections) has been a topic
of interest (see, e.g., Heath 1967, Aull 1971, Collins et al. 1990). We ask a related
question in the case of generating collections for algebras of sets: which countable
algebras of sets can be generated by1 a point-finite collection?

In answering this question, we link two classes of collections of sets considered
in Section 1.3: point-finite collections and countably discriminating algebras (see
Definitions 1.3.10 and 1.3.2). We prove that the countable algebras that can be gen-
erated by a point-finite collection are exactly the countably discriminating algebras.

Theorem 2.0.1. Let F be a countable algebra over a set X. Then F is generated
by a point-finite collection if and only if F is countably discriminating.

We begin the proof by showing that any countable algebra over a countable set
can be generated by a point-finite collection. This will be a consequence of a more
general result showing that certain properties can be passed from an algebra of sets
representing the countable free Boolean algebra to any countable algebra of sets,
assuming both are over countable sets.

Definition 2.0.2. We say a class C of algebras of sets has the point-based transfer
property (PTP) if: given any pair of countable algebras F ,F ′ over countable sets
X,X ′ respectively and onto homomorphism Ψ : F → F ′ such that there is an
f : X ′ → X (not necessarily onto) where

f(Ψ(A)) ⊆ A

for all A ∈ F , if F ∈ C, then F ′ ∈ C.
1 G ⊆ P(X) generates F if the smallest algebra containing G is F .
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Remark 2.0.3. Since we assume Ψ is an onto homomorphism in Definition 2.0.2,
the condition that f(Ψ(A)) ⊆ A for all A ∈ F is equivalent to

x′ ∈ Ψ(A)↔ f(x′) ∈ A

for all x′ ∈ X ′ and A ∈ F .

Speaking informally, a sufficient condition for a class having the PTP is that the
class is defined by a universal property concerning all points in the underlying set
of the algebra of sets. For example, each point being contained in exactly one set
and each point being contained in at most N sets (for any N) define classes with
the PTP.

We now prove that a representation of the countable free Boolean algebra being
in a class with the PTP is in some sense “contagious.” In the proof, we assume
basic knowledge of the Stone representation theorem for Boolean algebras (see, e.g.,
Sikorski 1969, p. 23) but often provide citations with page numbers. Also, we will
need the following definition in the proof (see, e.g., Bennett 1972).

Definition 2.0.4. A space X is countable dense homogeneous if it is separable and
for any two countable dense subsets A and B there is a homeomorphism h such that
h(A) = B.

Theorem 2.0.5. Let C have the point-based transfer property. If there is some
realization of the countable free Boolean algebra over a countable set in C, then C
contains every countable algebra over a countable set.

Proof. Let F be a countably infinite algebra of sets over a countable set X and B the
countable free Boolean algebra with f : F → B an isomorphism and where F ∈ C.
Let S(B) be the Stone space of B. Then by the Stone representation theorem, there
is an isomorphism Ψ : B → Clop(S(B)), where Clop(S(B)) is the set of clopen
subsets of S(B) and Ψ(b) := {x ∈ S(B) : b ∈ x}. Let ϕ : X → S(B) be given by

x 7→ {f(A) : x ∈ A,A ∈ F}.

It is easy to see that ϕ outputs an element of S(B). We claim 1) the image of ϕ is
dense in S(B) and 2) r−1 := f−1 ◦ Ψ−1 : Clop(S(B))→ F is induced by ϕ (that is,
r−1(U) = {x ∈ X : ϕ(x) ∈ U} for all U ∈ Clop(S(B))).

First, let V be a nonempty open set in S(B). Then V contains some nonempty
clopen set {x ∈ S(B) : b ∈ x} for some b ∈ B. Since f is an isomorphism, let
f(A) = b for some nonempty A ∈ F . Then for any x′ ∈ A, we have b ∈ ϕ(x′) and
so ϕ(x′) ∈ {x ∈ S(B) : b ∈ x} ⊆ V . Thus the image of ϕ is dense in S(B).

Second, let U = {x ∈ S(B) : b ∈ x} for b ∈ B. We need to show

r−1(U) = {x ∈ X : ϕ(x) ∈ U}.

Let x′ ∈ r−1(U). Then x′ ∈ f−1(Ψ−1(U)) = f−1(b). But if x′ ∈ f−1(b), then
b ∈ ϕ(x′) and so ϕ(x′) ∈ U . Thus we conclude r−1(U) ⊆ {x ∈ X : ϕ(x) ∈ U}. Now
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let x′ ∈ {x ∈ X : ϕ(x) ∈ U}. So b ∈ ϕ(x′) from which it follows f(A) = b for some
A ∈ F with x′ ∈ A. But notice

r−1(U) = f−1(Ψ−1(U)) = f−1(b) = A

and so x′ ∈ r−1(U), concluding the proof that r−1 is induced by ϕ.
Let F ′ be a realization of another countable Boolean algebra B′ over countably

infinite X ′ with f ′ : F ′ → B′ an isomorphism. Using the diagram in Figure 2.0.1
as a road map, we are going to build an onto homomorphism from F to F ′ that
satisfies the constraint in Definition 2.0.2.

F Clop(S(B)) Clop(S(B′)) F ′

X S(B) S(B′) X ′

r g

h

r′

ϕ χ ϕ′

Figure 2.0.1

The argument establishing 1) and 2) above did not depend on choosing B to be
the countable free Boolean algebra. Thus, we can run the whole argument again to
get an r′ : Clop(S(B′))→ F ′ that is induced by ϕ′ defined similarly as above. Then
the image of ϕ′ is dense in S(B′).

Since every countable Boolean algebra is the homomorphic image of the count-
able free Boolean algebra (Monk et al. 1989, p. 132), there is an onto homomorphism
g : Clop(S(B)) → Clop(S(B′)), and since Clop(S(B)) is a perfect algebra of sets
(Sikorski 1969, p. 20), g is induced by a point map χ : S(B′)→ S(B) (Sikorski 1969,
p. 33). Now consider χ ◦ ϕ′ : X ′ → S(B). The image of χ ◦ ϕ′ will be a countable
set since the image of ϕ′ is countable in S(B′), so χ takes the image to an at most
countable set. Note the image of χ ◦ ϕ′ is contained in a countable dense subset D
of S(B). Using the fact that the Stone space of the free countable Boolean algebra
is homeomorphic to the classical Cantor set (see, e.g., Monk et al. 1989, p. 104) and
that the Cantor set is countable dense homogeneous (see, e.g., Hernandez-Gutierrez
et al. 2018), there is a homeomorphism h of S(B) sending the image of ϕ onto D.

Now let Γ = r′◦g◦h◦r. Then since r, r′ are isomorphisms, h is a homeomorphism,
and g is an onto homomorphism it follows that Γ is an onto homomorphism. To see
that Γ satisfies Definition 2.0.2, we notice the following:

1. Since r−1 is induced by ϕ, for each A ∈ F

x ∈ A↔ ϕ(x) ∈ r(A).
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2. For each A ∈ Clop(S(B)) and x ∈ S(B),

x ∈ A↔ h(x) ∈ h(A).

3. Imχ ◦ ϕ′ ⊆ Imh|Imϕ.

4. Since g is given by the point-map χ, for each x ∈ S(B′) and A ∈ Clop(S(B)),

χ(x) ∈ A↔ x ∈ g(A).

5. Since r′ is induced by ϕ′, for each x ∈ X ′ and A ∈ Clop(S(B′)),

ϕ′(x) ∈ A↔ x ∈ r′(A).

Let f : X ′ → X map x′ ∈ X to any x ∈ X such that h(ϕ(x)) = χ(ϕ′(x′)), which
we know to exist by 3. We show f(Γ(A)) ⊆ A for each A ∈ F . Consider f(x′) for
x′ ∈ Γ(A) where Γ(A) = r′ ◦ g ◦ h ◦ r(A). Then by 5, ϕ′(x′) ∈ g ◦ h ◦ r(A). By 4,
χ(ϕ′(x′)) ∈ h(r(A)) and so by definition of f we have h(ϕ(f(x′))) ∈ h(r(A)). By
2, it follows that ϕ(f(x′)) ∈ r(A) and finally by 1 that f(x′) ∈ A. Thus, indeed
f(Γ(A)) ⊆ A proving that Γ is an onto homomorphism as needed in Definition 2.0.2.
It follows that F ′ ∈ C as C has the PTP, completing the proof.

We use Theorem 2.0.5 to establish that every countable algebra over a countable
set can be generated by a point-finite collection, and so we must first show a real-
ization of the countable free Boolean algebra over a countable set can be generated
by a point-finite collection. Note that the countable free Boolean algebra can be
realized as the periodic subsets of N with period a power of 2 (see, e.g., Givant and
Halmos 2010, p. 140.).

Lemma 2.0.6. The algebra over N consisting of all periodic sets with period a
power of 2 can be generated by a point-finite collection.

Proof. Let

A = {{n ∈ N : n ≡ j1, . . . , jk mod 2k} : 1 ≤ j1 < . . . < jk ≤ 2k, k ∈ N}

be the periodic sets of N with period a power of 2. It is clear that A is generated by

F ′ = {{n ∈ N : n ≡ j mod 2k} : 1 ≤ j ≤ 2k, k ∈ N}.

We claim the following subset of A is point-finite and generates F ′:

F = {{x : x ≡ j mod 2k} : k + 1 ≤ j ≤ 2k, k ∈ N}.

It is easy to check that F is point-finite—for every n ∈ N and some k sufficiently
large, n is no longer in the sets of period greater than 2k. To prove F generates F ′,
we induct on k to show F generates all sets in F ′ of the form {x : x ≡ j mod 2k}.
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There are two elements in F ′ of period 2, namely 2 mod 2 and 1 mod 2, both of
which are in F so the base case holds. Assume {x : x ≡ j mod 2k} for 1 ≤ j ≤ 2k

can be generated by elements in F ′. We note the following simple but key claim:
for each k, j ∈ N,

{x : x ≡ j mod 2k} = {x : x ≡ j mod k} \ {x : x ≡ j + k mod 2k}. (2.1)

To see (2.1), let x ≡ j mod 2k. Then x = j + 2kl for some l ∈ N. So clearly
x ≡ j mod k. Also notice that x − j is an even multiple of k. But if x ≡ j + k
mod 2k, then

x = j + k + 2kl′ = j + (2l′ + 1)k

for some l′ ∈ N and so x− j is an odd multiple of k, which is a contradiction. Thus
x ∈ {x′ : x′ ≡ j + k mod 2k}c, proving the left-to-right containment in (2.1). Let
x ∈ {x′ : x ≡ j mod k} \ {x′ : x′ ≡ j + k mod 2k}. Then x = j + kl for l ∈ N.
Since x /∈ {x′ : x′ ≡ j+k mod 2k} we know l must not be odd and so must be even.
Thus x = j + 2kl′ for some l′ ∈ N and so x ≡ j mod 2k, proving the right-to-left
containment in (2.1).

Now let 1 ≤ j ≤ k. By the lemma,

{x : x ≡ j mod 2k+1} = {x : x ≡ j mod 2k} \ {x : x ≡ j + k mod 2k+1}.

We know {x : x ≡ j mod 2k} can be generated by elements in F by induction and
{x : x ≡ j+k mod 2k+1} ∈ F since j+k ≥ k+ 1. Thus {x : x ≡ j mod 2k+1} can
be generated by elements in F ′ for all 1 ≤ j ≤ k. Since {x : x ≡ j mod 2k+1} ∈ F
for k + 1 ≤ j ≤ 2k+1, we have proved the claim.

That every countable algebra over a countable set can be generated by a point-
finite collection is an easy corollary to Theorem 2.0.5 and Lemma 2.0.6.2

Corollary 2.0.7. Every countable algebra over a countable set can be generated
by a point-finite collection.

Proof. We show that the class C of algebras of sets that can be point-finitely gen-
erated has the PTP. Let F ,F ′ be countable algebras over countable sets X,X ′
respectively. Let Ψ : F → F ′ be onto with a map f : X ′ → X such that

f(Ψ(A)) ⊆ A

for all A ∈ F . Assume F ∈ C and G is a point-finite generating collection for F .
Let

G′ = {Ψ(A) : A ∈ G}.
2Thanks to Pierre Simon for pointing out that there is a direct way to prove Corollary 2.0.7.

Here is a sketch. Let F = {Ai}∞i=1 be a countable algebra overX = {xi}∞i=1. Since (A∆B)∆B = A,
for any i, j, replacing Ai with Ai∆Aj does not change the algebra generated by the resulting
collection. Let i1 be the minimal i such that x1 ∈ Ai. For i > i1 with x1 ∈ Ai, replace Ai with
Ai∆Ai1 so that x1 is no longer in any Ai for i > i1. Continue for each xj making sure that
ij > ij−1 so that Aij will not contain xj′ for any j′ < j.
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Then G′ generates F ′ since Ψ is an onto homomorphism. G′ is also point-finite since
for each x′ ∈ X ′ and Ψ(A) ∈ G′ (so A ∈ G),

x′ ∈ Ψ(A)↔ f(x′) ∈ A.

So if x′ were in infinitely many elements of G′, it would follow that f(x′) is in
infinitely many elements of G, which is a contradiction. Thus F ′ ∈ C and so C has
the PTP.

We now consider what happens when the underlying space of the countable
algebra is uncountable.

Lemma 2.0.8. Let F be a countable algebra over an uncountable set X. Then F
is generated by a point-finite collection if and only if F is countably discriminating.

Proof. Consider a countable algebra F over an uncountably infinite set X. Let
X = {[x] : x ∈ X} where [x] is the ∼ equivalence class of x (see Definition 1.3.2).
For each A ∈ F , let

A = {[x] : x ∈ A}
and

F = {A : A ∈ F}.
We claim F is a point-finitely generated algebra if and only if F is. In particular,
we claim G generates F if and only if G = {B : B ∈ G} generates F . This follows
from two facts. First, it is easy to check that A =

⋂n
i=1

⋃mn

j=1Bij, where Bij ∈ F
or Bc

ij ∈ F , if and only if A =
⋂n
i=1

⋃mn

j=1Bij. Second, since x ∈ A if and only if
[x] ∈ Ā, we have that

|{A : x ∈ A}| = |{A : [x] ∈ A}
and so each x is in finitely many elements of G if and only if [x] is in finitely many
elements of G

Now, we show F is point-finitely generated if and only if X is countable, which
will prove the lemma. Let G generate F and be point-finite. Then take u([x]) to be
the ultrafilter generated by [x]. Since G is point-finite, we have

u([x]) ∩ G <∞.

But note that u([x]) is completely determined by u([x]) ∩ G. So if

u([x]) ∩ G = u([y]) ∩ G,

then u([x]) = u([y]) which implies [x] = [y] by the definition of ∼. In other words,
the map from X to finite subsets of G given by

[x] 7→ u([x]) ∩ G

is an injection. This implies X is countable. Also if X is countable, then F is
point-finitely generated by Theorem 2.0.7, and so we are done.
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The main theorem of this chapter is a simple consequence of Corollary 2.0.7 and
Lemma 2.0.8.

Theorem 2.0.1. Let F be a countable algebra over a set X. Then F is generated
by a point-finite collection if and only if F is countably discriminating.

Proof. If X is countable, then F is countably discriminating and, by Corollary 2.0.7,
generated by a point-finite collection, proving the equivalence. If X is uncountable,
the equivalence is given by Lemma 2.0.8.

To conclude, consider the following generalization of the notion of point-finiteness.

Definition 2.0.9. For F an algebra of sets, we define the agglomerativity of F to
be the least cardinal κ such that there is a generating collection for F in which every
point belongs to fewer than κ sets from the generating collection.3

For example, the agglomerativity of the finite-cofinite algebra over a countable
set is 2 since it can be generated by the set of singletons. By Theorem 2.0.7, the
agglomerativity of any countable algebra over a countable set is at most ℵ0. It is
also easy to show that the agglomerativity of an algebra of sets over a countable set
representing the countable free Boolean algebra is ℵ0.4

More generally, can we give a theory of the agglomerativity of algebras of sets in
terms of properties of the Boolean algebras they represent? While the remarks just
made are a first step toward such a theory of agglomerativity, we leave the rest for
future work.

3Thanks to Wesley Holliday for suggesting this formulation of the notion of agglomerativity.
4The proof comes down to showing that if A has finite agglomerativity then A has an atom.
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