I/O systems are increasingly becoming a major performance limitation to faster computer systems. Recently we presented several disk array architectures designed to increase the data rate and I/O rate of supercomputing applications, transaction processing, and file systems. In this paper we present a hardware performance measurement of two of these architectures, mirroring and rotated parity. We see how throughput for these two architectures is affected by response time, request size, and the ratio of reads and writes. We also explore tradeoffs in the unit of interleaving and number of disks. We find that for applications with large accesses, such as many supercomputing applications, a rotated parity disk array far outperforms traditional mirroring architecture. In contrast, for applications with many small accesses, such as transaction processing and traditional file systems, mirroring disk arrays outperform rotated parity disk arrays.
Title
An Evaluation of Redundant Arrays of Disks using an Amdahl 5890
Published
1989-05-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-89-506
Type
Text
Extent
62 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).