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NONSMOOTH OPTIMIZATION ALGORITHMS

FOR THE DESIGN OF CONTROLLED FLEXIBLE STRUCTURES1

E. Polak

Department of Electrical Engineering and
Computer Sciences

University of California
Berkeley, Ca. 94720

ABSTRACT

First we show that both open-loop and closed-loop optimal control problems can be expressed in
the form of nonsmooth optimization problems. Then we present the basics of a class of nonsmooth
optimization algorithms which solve constrained optimization problems involving the maxima of
differentiable functions. The described algorithms are shown to be natural extensions of the method of
centers.

1 The research reported herein was sponsored in part bythe National Science Foundation under grant ECS-8121149, the Air
Force Office of ScientificResearch grant AFOSR-83-0361, the Stateof California MICRO Program and the General Electric Co.



1. INTRODUCTION

It is reasonably obvious that the solution of constrained open-loop optimal control problems

requires the use of appropriate optimization algorithms. It is less obvious that the design of compensa

tors for closed-loop systems can be cast as an optimization problem which can be treated effectively by

optimization algorithms. In this paper, we make a strong case for the use of nonsmooth optimization

algorithms in the solution of constrained open-loop optimal control problems, as well as of linear feed

back system design problems, and we present an introduction to a set of appropriate nonsmooth optimi

zation algorithms.

Feedback is used to achieve various desirable properties in a control system, such as stability, dis

turbance attenuation, and low sensitivity to changes in the plant. Since these properties depend on the

shape of various closed-loop system responses, all control system design techniques are at least partially

based on response shaping. In the sixties and seventies, the most popular control system design

methods were based on weighted least-squares unconstrained minimization in the form of linear-

quadratic regulator (LQR) theory (see e.g. [Kwa.l]). The main drawback of the LQR approach is that

it tends to result in poor stability robustness and output-disturbance rejection (see e.g., [Doy.ll). Furth

ermore, the least-squares approach does not permit imposition of hard bounds on system responses. A

more recent approach for shaping a single frequency response is to minimize not a weighted quadratic

norm, as in the LQR approach, but a weighted sup-norm (//°°-norm) (for a survey see [Fra.l]). This is

usually done in conjunction with a compensator parametrization which makes all transfer functions

affine in the design parameter, and hence reduces the response shaping to a convex, unconstrained

optimization problem in H°°.

However, most closed-loop system design problems require shaping of several frequency and time

domain responses, some of which may be subject to hard constraints. For example, while minimizing

the norm of the sensitivity matrix over the bandwidth of the feedback system, the norm of the transfer

matrix from the command input to the plant input has to be upper-bounded. Otherwise the command

input can drive the plant input outside the linearization region, which may lead to performance

deterioration and even instability. The requirement of simultaneous shaping several frequency



responses can be dealt with in various ways. For example, in [Doy.2], loop transformations and weight

ing functions are used to transform the multiloop shaping problem into a problem of unconstrained

minimization of the norm of an affine matrix function in H°°. This approach can be quite conservative.

Furthermore, when there are hard bounds on the norms of some of transfer function matrices, the

weighting approach cannot be used, because it is not known how to transform a constrained H°° minim

ization problem into an unconstrained one by using weights.

A second approach, first presented in [Kwa.21, is based on the fact that many essential design

objectives can be formulated as bounds on the weighted sensitivity matrix S(j(o) and/or on the

weighted complementary sensitivity matrix T(J<a) = I - SO*©). It is concluded in [Kwa.2] that a bal

ance between conflicting design objectives can be achieved by minimizing a performance criterion of

the form sup [ IV(j<n)S(j<a)\2 + \W(J<£>)T(j<£i)\2 ], where V(0 and W(-) are weighting functions

selected by the designer. This approach can also be conservative.

>From a designer's point of view, both LQR and the above approaches to complex design prob

lem solution suffer from the drawback that they use design weights which are very difficult to select.

This drawback can be further accentuated by the fact that the solution of a weight-dependent, uncon

strained optimization problem, can be very sensitive to the weights, which implies that whenever a con

strained problem is somehow converted to an unconstrained one by means of weights, a large amount

of time may have to be devoted to weight selection.

In [Pol.7], the reader will find a formulation of finite dimensional, linear, time invariant

feedback-system design, subject to various hard constraints, as convex, nonsmooth optimization prob

lems. In [Pol.7], affine compensator parametrizations are used, as in the H°° approach. In this paper we

use a direct compensator parametrization which enables us to select the degree of the compensator,

because affine parametrization would result in an infinite dimensional compensator. As a trade-off, we

give up problem convexity. We show the mathematical unity of both open- and closed-loop optimal

control problems and we present a sequence of progressively more complex algorithms for their solu

tion.



For further reading on nonsmooth optimization and optimal control algorithms, we refer the

reader to [Gon.l, Kiw.l, Kle.l, May.l, May.2, Pir.l, Pir.2, Pol.3, Pol.4, Pol.5, Pol.6, Pol.10].

2. FORMULATION OF OPTIMAL DESIGN PROBLEMS

We propose to consider both open-loop optimal control and closed-loop optimal control of flexi

ble structures. By open-loop optimal control we mean the computation of optimal open-loop controls

which take a structure from an initial state to a desired state subject to various constraints on the con

trol and state, while by closed-loop optimal control we mean the computation of optimal, finitely

parametrized, finite-dimensional closed-loop compensators, subject to constraints on various time- and

frequency-domain constraints.

2.1. CANONICAL FORMS

Our first task is to show that these problems can be cast in the form of the two canonical prob

lems, below. Note that the two problems differ only in the space on which they are defined. For the

design of finite-dimensional closed-loop compensators, which is a problem with a finite dimensional

design vector, we adopt the canonical form

min^Oc) I V(x)<0. ;em, xeX) , (2.1a)

where m = {1,2,..., m }, X c R" is a set with a very tractable description, e.g., X = R" or

X £ UeRn I Ijc* I <bk , k = 1,2,3 n) . (2.1b)

and, with M = {0,1,2 m },

V (r) = max V(x ,yj), V; e M, (2.lc)
yjeYj

where ty' : R" xR-> R. We will assume that the functions ty(-, •) and their gradients Vx<y (•, •) are

Lipschitz continuous on bounded sets. In addition, we will assume that the intervals

Y; = [a; ,bj] c R are compact. We note that when Y; contains only one point, i.e., ay- = bn the

function yy(x) = <J/(jc ,af) = /'(*) is differentiable (otherwise it need not be); thus we see that the

formulation (2.1a-c) allows that some of the y'(x) are ordinary differentiable functions.



Similarly, for open-loop optimal control, we adopt the canonical form

min{\i/°(u ,T) I V(w ,T)<0, jem, (« J)eUxT} , (2.2a)

where U ^ {u e L§[0,1] I u(t)e U \ft e [0,1]}, U c Rp either is compact or else equal to Rp,

T = [ro.r/l.andforyeM,

y (u ,T) = max ty(u , T , t), (2.2b)

with (^ :L§[0,1] x R+ x R -» R. We will assume that the functions <j/(-, •, •) and their gradients2

Vutfi' •'» ) a1*6 Lipschitz continuous on bounded sets. In addition, we will assume that the intervals

Y7 c R are compact

22. TRANSCRIPTION OF OPEN-LOOP OPTIMAL CONTROL PROBLEMS INTO CANONICAL FORM

Since the transcription of open-loop optimal problems into the form (2.2a) is simpler than the

transcription of closed-loop optimal control problems into the form (2.1a), we will do it first. Although

in practice one usually computes with second order dynamics, the explanation becomes simpler if we

adopt as our model for the dynamics the first order differential equation

z(t) = TAz(t) + Th(z(t),u(t)), /e[0,l], z(0) = z0. T>0, u€U, (2.3)

where the state vector z(t) is an element of a Hilbert space, //, so that (2.3) can, in fact, be a partial

differential equation, and the control «(r)e Rp is finite dimensional. We will assume that A is an

infinitesimal generator of a C0 semigroup3 and that the operator h{- ,•) is bounded and continuously

differentiable. The parameter T is a time-scaling parameter which enables us to convert free time prob

lems into fixed time form, as well as to avoid some well known pathological behavior of the discretiza

tions that are needed in solving optimal control problems. When (2.3) represents an ODE,A = 0 holds.

We note that (2.3) can be used to represent a broad class of dynamical systems described either by

ODEs or PDEs, including PDEs derived using Lagrangian dynamics.

By gradients we meanthe kernels of linear functionals which play an analogous role to gradients of functions defined on
IR", i.e., the gradient of / :L§[0,1] -»R is defined by the property that lim,.^, \f(u +tSu) -/(u) - r (V/(u),8u> rft =0, where
<•, •)2 denotes the L§[0,1] scalar product

3For a discussion of semigroup theory see [Bal.l] or[Paz.1].



Obviously, we must assume that (2.3) has a weak solution, which we will denote by zu ,T(t). In

addition, we will assume that the differential, 6zu,r(r ;8m ,oT), of this solution, with respect to the

control u and the time scaling parameter T, is given by the weak solution of linearized equation

so)=t[a +a»fr'-ro>."t>»]fc0) +Tmzl"y-u(,)hu(o +w+*&-•'»). «(0)]8r
dz ou

r e [0,1], 8z(0) = 0. (2.4)

Now consider the optimal control problem with control, end point and state space constraints:

min {*V'r(l)) I g>(zM'T(l))<0, y = 1.2 w,; *V,T(O)*0. Vfe[0,l],
(u.T)

j =m1 + l,m1 + 2 m; k(Og£/ Vf e [0.1] Je [70 ,7>1} ,(2.5)

where T0 > 0 is assumed to be very small and Tf < oo. We assume that the control «(•) is an L§[0,1]

function, that the set U c Rp is compact and that all the functions g' : H -> R are continuously

differentiable. Next, we define Yy={l) for j = \,2,...,mx and Y; = [0,1] for

j - mx + 1, ...jnl + m2 (so that m = mt + m^, and we define ^ :I§[0, 1] x R+ x R -» R,

j =0,1 m, by V(u,T,t) = g'(zu'T(t)) for 7 = 1,2,...^!, and by ^(u >T ,0 = *'(*"'r(0)

for j = m! + 1, ...,/n, and, finally, if for 0,1,2,..., m, we define the functions V :L5[0,1] x R+ -> R

by W(u , T) = max (j/(m ,7 ,0. then we see thatproblem (2.5) assumes the form (2.2a).

23. TRANSCRIPTION OF FEEDBACK-SYSTEM DESIGN INTO CANONICAL FORM

Next we turn to the more arduous task of transcribing closed-loop optimal control problems into

the form (2.1a). Consider the nt -input - n0 -output feedback system 5, shown in Fig. 1. We assume

that the plant is described by a linear, time-invariantdifferential equation in a Hilbert space E:

zp(t) = Apzp(t) + Bpe2(t), (2.6a)

y2«) = Cpzp(t) + Dpe2(t), (2.6b)

where zp(t)e E, e2(t)e R*1, y2(t)e Rn°, for t >0. We will assume that the operators Bp :Rni -> £,

CP:E -» Rn° and Dp :Rn' -> Rn° are bounded, and that Ap may be an unbounded operator from E to
A t

£, with domain dense in E, which generates a C0 semigroup, (e " }, ^.o- We will denote the spectrum



of Ap by a(Ap), and we will denote the resolvent set of Ap by p(Ap). Referring to [Paz.l], we find

that there exist M € (1, oo) and ye R such that

|| eApt || <Me* , Vr >0 ; (2-7)

furthermore p(Ap) contains the half-plane, [s e (E I Re s >y}. We will denote the domain and the

range of Ap by D (Ap) and R(Ap), respectively.

We define the transferJunction of the plant, Gp(s), by

Gp(s) £ Cp(rf - A,)"1*, +Dp , Vs g pOV . (2.8)

It follows from [KaLl, Theorem in 6.7], that Gp(s) is analytic on p(Ap). In addition, it is shown in

[Jac.l] that for s e {s e <E I Re s > y), Gp(s) is equal to the Laplace transform of

[CpeAptBp +DA,6(r)}t2_oand lim(j| ^ Gp(s) -*Dp.
Re s >Y

We will assume that the compensator is finite dimensional, linear, and time-invariant, with state

equations

zc(0 = Aczc(0+Sc<?i(0, (2.9a)

yi(0 = Cczc(0+ZWO . (2.9b)

where zc(t)e R"c, ei(/)e R\ yi(/)e Rn'' and i4c, Bc, Cc and Dc are matrices of appropriate dimen

sion. We will assume that a number of the elements of the matrices Ac, Bc, Cc and De are to be

determined by optimization. We group all these elements into a single design vector xeRn and will

assume that all the compensator matrices are continuously differentiable in this vector. From now on

we will show the dependence of the matrices Ac, Bc, Cc and Dc on x explicitly. Similarly, we will

refer to the corresponding closed-loop system as S(x).

We note that the compensator transfer function is given by

Gc(x ,s) = Cc(x)(sfne - Ae(x)T%(x) +De(x). (2.10)

To ensure well-posedness of the feedback system, we assume that det(In. +De(x)Dp) * 0.

Finally, we define the Hilbert space H =E x R"c, on which the inner product is defined as follows:



for u = (zp , zc), v = {zp , ze) in H

<u , v >H= <zp , z'p ) E + <zc ,z'c > . . (2.H)
IK

Since e\-M-y2-d0 and e2 - y\ + diy where d0 is the plant output disturbance and a\ is the

plant input disturbance, the state equations for the feedback system are given by

(2.12a)

where

A(x) =

*(*) =

C(x) =

D(x) =

*r = A(x)

• *

zp + B(x)

» »

u

d0
**. zc

di

• «

*i
» »

2

» «

u

*2 = C(x) *P
7

+ D(x) d0

y\ v J di

A, - BfDe(fiW% +DpArOOr1^ Bp(/„i.+Z>c(x)Dpr1Cc(x)

-fic(x)(/n<> +DjArOO)"1^ Ac(xyBc(x)(Ino +DpDc{x)YlDpCc{x)

'BpDe{x){In+DpDc{x)Tl -BpDc(x)Vn+DpDc(x)Tl Bp(In. +Dc(x)Dpr1
Bc(x)(L +AAC*))"4 -*cCO(V +DpDc(x)Tl -Bc(x)(L +DpDc(x)T'Di

-(/„, +DpDeQc)TlCp -(Ino +D^Ocr^C.Cr)
\-l/" /r i r» /^"vn \-l*-Dc{x)(Jn0 + DpDc(x)TlCp (/„. +Dc(x)DprlCe(x)

(f% +DpDc(x)TlCp {I% +DpDe(x)TlDpCc(x: ^

(In<> +DpDc (x)Tl -(/„o +DpDc (x)Tl -{I% +DpDc (x)ylDp
Dc(x)(Ino +DpDc(x)Tl -Dc(x)(Ino +DpDc(x)Tl (/„, +Dc(x)DpTl
I. - (/. +DpDc(x))-1 -(/„ +DpDcCc))"1 (/„, +DpDc(x)TlDp

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.120

The domain of A is given by D(A) =D(Ap) x R"e c H. It follows from [Paz.l, p. 76], that because,

with the exception of Ap, all the operators in the matrix A are bounded, and because Ap generates a

Co-semigroup, the operator A also generates a C0-semigroup, [eAt }f ^0-

A. Frequency-Domain Performance Specifications

First, since the feedback system (2.12a,b) has 3 inputs and 3 outputs, we write its transfer func

tion G(x ,s) = C(x)(sl - A(x))~lB(x) + D(x), which is defined for all s e p(A(*)), in block form, as

-8-



follows:

G(x,s) =

Gn(x ,s) G12(x ,s) Gn(x ,s)

G2l(x ,s) Gzfa.s) G23OC ,s)

G2l(x ,s) G32(x,s) Gn(x,s)

(2.13)

We will use a "hat" to denote the Laplace transforms of various functions: e.g., u(s) is the Laplace

transform of u(t).

(i) Stability Constraint. Our first and most important performance requirement is closed-loop sys

tem stability. Let z = [zp ,zc]e H. Then we recall (see [Paz.l]) that the mild solution of (2.12a) is

given by

z(t) =eAp'z0 +£eApit ~x)Bu(x)dx . (2.14a)

We therefore define the exponential stability of the feedback system S(P , K) in terms of the semigroup

{ '̂4'}»a.o» as follows.

Definition 2.1: For any a >0, the feedback system S(x) is a-stable if there exist M e (0,oo) and

oto > a such that

|| eMx)t || H<: Me~arf Vf >0 . (2.14b)

The class of plants that we can deal with are characterized by the following definition:

Definition 22: [Jac.l] Given an a>0, the pair (Ap ,Bp) ((Ap ,Cp)) is a-stabilizable {a-detectable)

if there exists a bounded linear operator K:E -> RB' (F :Rn° -» E) such that Ap -BpK (Ap - FCp)

is the infinitesimal generator of an a-stable C0-semigroup. •

It was shown in [Jac.l] that a plant is a-stabilizable and a-detectable if and only if there exists a finite

dimensional compensator withDC=Q such that the feedback system is a-stable.

For any a>0, we define the stability region £>_ ^ {.ye C I Re(s) < -a). Let

f/_«= {s e <E I Re(y) >-a], BU^ = [s e C I Re(j) = -a) and let Ut^ = [s e € I Re(j) > -a}.

Proposition 2.1: [Jac.l] For any a^O, the plant is a-stabilizable and a-detectable if and only if

there exists a decomposition of £ = E_+ E+, with E+ finite-dimensional, which induces a decomposi-



tion of the plant (2.6a,b), of the form

d_
dt

zpM)
zp+(0

Ap. 0

0 Ap+J

y(0=[Cp. Cp+]

zp-(0
zp+(0

Zp4!)

Bp-
p+

u(t) ,

+ Du(t),

(2.15a)

(2.15b)

such that c(Ap+) c £/_„, (Ap+, Bp+) is controllable, (Ap+, Cp+) is observable, and Ap_ is the

infinitesimal generator of an a-stable C0-semigroup on £_. •

In view of the above, we will restrict ourselves to feedback systems in which the plant is a-stabilizable

and a-detectable for some a > 0.

The relationship between a-stability of the feedback system and a-stabilizability of the plant is

established in the following result:

Proposition 2.2: [Jac.l] Suppose that the plant is a-stabilizable and a-detectable for some a > 0.

Then, for any a >0, the feedback system is a-stable if and only if U^ is contained in p(A). •

We are finally on the way to defining a computational stability criterion which can be expressed

in the form of an inequality of the type appearing in problem (2.1a). First we define the characteristic

function %: <E -> €, of the feedback system S(x), by

Xix ,s) £ det(tfB+-A,+)det(.y/„e - Ac(x))det(/„, +Ge(x ,s)Gp(s)) , (2.16)

where Ap+ is defined as in (2.15a) and n+ is the dimension ofAp+. Next, for any function /: (E -» C,

we define Z(f(s)) = [s 6 C I f(s) = 0} to be its set of zeros, in [Har.l] we find the following pair

of crucial results:

Proposition 2.3: [Har.l] The system S(x) is stable if and only if Z(%(x , s)) c £>_„. •

Theorem 2.1: [Har.l] Let /i+ and nc be the dimensions of the matrices Ap+ in (2.15b) and Ac(x) in

(2.9a), respectively. Then Z(x(x ,s)) c D_a if and only if there exists an integer Nn > 0, and polyno

mials d0(s) and n0(s), of degree Nd =Nn + ns and Nn, respectively, with ns = nc+n+, such that

(0 Z(d0(s)) c D. Z(n0(s)) c£)^, (2.17a)

•10-



(//) Re
%(x ,s)ncfa)

do(s)
>0 Vje3f/. (2.17b)

In practice the test (2.17a,b) can be used only as a sufficient condition of stability, because one is

forced to choose in advance the degree Nd of the polynomial d0(s). Furthermore, the polynomials

d<£s) and n0(s) must be parametrized in such a way that satisfaction of (2.17a) can be ensured by satis

fying a simple set of inequalities. We note that when a ,b e R, Z[(s + a) + a)] c D _a if and only

if a > 0, and Z[(s + a)2+ a(s + a) + b] c D _a if and only if a > 0, b > 0. Hence, assuming

that the degree of d0(s) is odd, we set

A

dote ,y<i) = (te+a) + a0)Yl((s + a)2 + a,(* + a) + bt) ,
1=1

(2.18)

where yd =• [a0,alta2, • • • ,am,bltb2, • • • ,bm]Te R2"1"1"1 and JV*d = 2m+l. When the degree

of d0(s) is even, the first factor in (2.18) is omitted. The polynomial n0(s), which is of degree

Nn = Nd - ns can be parametrized similarly, with corresponding parameter vector yn.

It now follows from Theorem 2.1 that the requirement of closed-loop stability reduces to solving

the following set of inequality constraints:

e-yi^O, for/ = 1,2, • • • ,Nd ,

e-yi^O, fori = 1,2, ••• ,Nn ,

e - Re(
%(x ,- a + jq))/i0(yB ,- a + jco)

do(yd,-a + joi)
)<0, V©€[0,oo) ,

(2.19a)

(2.19b)

(2.19c)

where yd is the /-th element of yd, y'n is the /-th element of yn and e > 0 is small. If we define

x=(x ,yn ,yd), and

y^x) = sup
_ ,X(x ,- a + jto)np(yn ,- a + yco)x

g — Ke( , . )
^o(y<i.- OL + jomega)CO e [O.oo)

we see that (2.19c) is of the form

Voo £ 0.

•11-

(2.19d)

(2.19e)



The evaluation of %{x ,- a + yco) requires the evaluation of the closed-loop system frequency

response. For an elementary treatment of how this computation can be carried out see the Appendix

and [Wuu.l].

Now that we have established a set of inequalities ensuring stability, dealing with the remaining

performance requirement is relatively easy.

(ii) Command Tracking and Output Disturbance Rejection. Suppose that the desired bandwidth

for the feedback system is [0, coc]. Both good tracking of the input u and good rejection of the output

disturbance d0, over this frequency interval, as well as reasonable behavior outside, can be achieved by

making small || Gn(x J an) ||, the norm of the transfer function from the command input u to the

tracking error ex. Therefore we define the performance function \|/2: Rn -» R by

y\x) = sup { o* [Gn(x ,j(£l) ] - bf0((ii)) , (2.20a)
coe(0,ciy]

where bf0 (•) is a piecewise continuous bound function and o* [A ] denotes the largest singular value of

A, and ©/ is the highest frequency over which quantitative design is required. We can now express the

command tracking and output disturbance rejection requirement as an inequality:

xrtc) < 0 . (2.20b)

It remains to choose the bound function bf0(-). Since by an extension of Bode's Integral Theorem to

multivariable systems [Boy.l], it follows that for every frequency interval of nonzero measure over

which the feedback system attenuates output disturbances, there must exist an interval of nonzero length

over which the system amplifies output disturbances, we must let b/0 (•) exceed 1 over some frequency

interval outside the system bandwidth. Therefore a simple choice for the bound function would be to

set

0 < bf0(co) = bx « 1, if co < coc

fyv>(w) = b2> 1 if co > coc . (2.21)

(iii) Input Disturbance Rejection. To obtain good input disturbance rejection over the feedback

system bandwidth [0, coc], we must keep small || G33(jc ,yco) ||, the norm of the transfer function from

the input disturbance di(s) to the output y(s). Therefore we define the performance function

-12-



V3:R* -» R by

y*(x) & sup {a [G33(x ,yco) ] - fy,(co)} , (2.22a)
ooe [0,<b,] v '

where &/,(•) is a piecewise continuous bound function. Hence the input disturbance rejection require

ment reduces to the inequality:

Vfr) <, 0 . (2.22b)

(iv) Plant-Input Saturation Avoidance. Since a large plant input, e2, or state can drive the plant

out of the operating region for which the linear model is valid, it is important to keep the plant input

and state small, for otherwise deterioration of performance and instability may occur. Hence, to limit

saturation effects produced by command inputs or output disturbances, we define the performance func

tion xj/4; Rw -> R by

\iAjc) £ sup [c[G2l(x ,;co)] - bs} (2.23a)

where bs > 0 is a suitable bound for the plant input power spectrum amplitude. The plant-input satura

tion avoidance requirement can now be formulated as

y*(x) < 0 . (2.23b)

(v) Stability Robustness to Plant Uncertainty. Plant models always have some uncertainty in

them. Since closed loop stability is a fundamental requirement, the design process must take into

account not only the nominal model, which was used to set up (2.19a-c), but also model uncertainty.

The following result (see [Doy.2], [Che.l]) gives a characterization of plant uncertainty and a

corresponding condition for stability robustness.

Theorem 2.2: Consider the feedback system in Fig. 1, and assume that the compensator has been

chosen so that this system is 0-stable for the nominal plant transfer function Gp(s). Let / :R+ -» R+

be a continuous, strictly positive "tolerance function" such that for some k e N, coo e R+, / (co) > 1/co*

for all co > co0. Let the set

G, A {GpeR(.y)v<B,' I G,0'co) =G,(/co) +6G,(/co),
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a[5Gp0'©)] </(co). coe R+ , Ndp =NCp } (2.24a)

where N& , NG denote the number ofunstable poles ofGp and Gp, respectively4 . Then, the feedback

system in Fig. 1 is 0-stable for all G?eG/, if and only if

o[G21(x ,;co)] < l//(co) Vco ^0 . (2.24b)

•

Hence, if we define the function \|f5: Rn -» R by

yfix) £ sup {a[G2i(x ,j co)] -1// (co)} (2.25a)
coe [O.oo)

then for all x such that

y5(x) <, 0 (2.25b)

holds, the compensator K(x) will stabilize not only the plant Gp, but also any plant Gp e Gt.

B. Time Domain Performance Specifications

Frequency domain performance specifications are inadequate when "hard" time-domain bounds

need to be satisfied at various points in the feedback loop. For example, it has been traditional to

impose bounds, in terms of rise time, overshoot, and settling time specifications on feedback system

zero-state step responses. In general, the satisfaction of such time-response specifications cannot be

insured by shaping transfer functions in frequency domain.

We will denote the zero-state responses of the system (2.12a,b) by ex(t ,u ,d0 ,</,-).

e2(t ,u ,d0 , a\), and y(t ,u ,d0 , dt), respectively. We will continue to denote components of a vector

by superscripts.

(i) Time Domain Responses. Suppose that we are required to ensure that the step response, as

measured in the output yl(t), when u(t) = us(t) A (1,0,0 0), d0(t) = 0, d,(f) a 0, is contained in

a window defined by upper and a lower, piecewise continuous bound functions, b(t), and b(t), respec

tively. Let xjr6: Rn -> R be defined by

4 A larger setof plant perturbations is considered in [Che.l].
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\jf6(jc) £ max {yl(t ,us ,0,0)-b(t)} , (2.26a)

and let y7: Rn -> R be defined by

y7(x) £ max {b(t) - y\t ,us ,0,0)) n.26b)

Then the step response specification reduces to the pair of inequalities:

Vfc) £ 0 , y7(x) £ 0 . (2.26c)

More generally, we may require that the plant output track, within a tolerance, a given command

input, say u(t) = ud{t). Let bd() be a piecewise continuous tolerance function, and let \|/8 ;Rrt -> R

be defined by

y*CO ^ max { ||y(/ ,ud ,0,0) - ud(t) \\ 2- bd(t)}. (2.27a)

Then the tracking requirement becomes

\f\x) < 0 . (2.27b)

(ii) Output Disturbance Rejection. There may be a need to limit the effect of "persistent" output

disturbances on the plant output (see [Vid.2], [Dah.l]). Frequency-domain disturbance specifications

may be inadequate to meet this need, and one must deal with this problem in the time-domain by limit

ing the induced sup-norm of the operator that takes plant output disturbances into plant outputs.

Clearly, the zero-state response of the feedback system in Fig. 1 to an output disturbance (assuming that

all other inputs are zero) has the form

y(t .0.d0 ,0) = fKdo(x ,t - x)d0(x)dx . (2.28a)

Let y9: Rn -» R be defined by

VCc) A sup J || Kdo{x ,x) || dx-bo, (2.28b)
/ 6 [0, oo) 0

where b0 > 1. Then, the requirement that
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y9Cc) < 0 , (2.28c)

ensures that no output disturbance d0 (•) with norm less than 1 will produce a feedback system output of

norm larger than b0.

(iii) Plant Saturation Avoidance. The frequency-domain saturation avoidance inequality (2.23b)

does not limit the time-domain amplitude of the plant input when the command input has significant

spectral content outside the closed-loop system bandwidth. We can ensure that the plant input does not

exceed required bounds by limiting the size of the induced sup-norm of the operator that takes the

command input into the plant input. This results in an inequality similar to (2.28c).

C. Formulation of Optimal Design Problem

First of all, it is not clear that a set of specifications, such as those stated above, is consistent.

Hence it may be desirable to solve first a "phase I" problem of the form:

v = min max \|/y(jc). (2.29)
x 6 X j 6 in

If the value v turns out to be negative, all the specifications can be satisfied. If v turns out to be posi

tive, some compromise must be reached either by relaxing the bounds in the definitions of the \|/y (•), or

by increasing the compensator dimension until satisfaction is obtained. Once this has been done, then

one of the performance functions can be designated as the cost function, while the others become con

straint functions in a design problem of the form (2.1a). Alternatively, weights can be introduced into

the minimax problem (2.29) as a way of obtaining a compromise design.

3. ALGORITHMS

Firstiy, for an extensive treatment of nonsmooth optimization algorithms we refer the reader to

[Pol.3]. In this paper we will content ourselves with an introduction to the subject. The easiest way to

explain algorithms for solving (2.1a) and (2.2a) is to proceed in stages which take us from a conceptual

algorithm for solving finite dimensional problems of the form (2.1a), to an implementable algorithm for

solving finite dimensional problems of the form (2.1a), to an implementable algorithm which solves

optimal control problems, with control and state space constraints, and either ODE or PDE dynamics, of
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the form (2.2a). We will not treat separately the problem (2.29) since an algorithm for it is obtained

from one for solving (2.1a), by setting y°(x) b -oo, or by observing that it is equivalent to the problem

below, defined on Rn+1, in which we denote vectors by x = (x ,xn+l) = (xl, • • • ,xn+l):

min (xn+1 I V CO - xn+1 £ 0, jem, jc e X}. (3.1)

Let the steering parameter5 y >1 begiven and let

y(x) £ maxV(x), (3.2a)
j em

y+(x) & max{0,\|f(x)} , (3.2b)

and, for any z e Rn, let the parametrized function Fz(x) be defined by

Fz(x) A max{V°(x)-¥°(0-W+(z).V(x)-V|/+(z), jem). (3.2c)

Our first observation is that for any z e Rn, Fz(z) = 0. Our second observation is that if x* is a local

minimizer for (2.1a), then it follows from the fact that (i) yOc) > 0 when x is infeasible for (2.1a), and

(ii) y°(x) > \|/°(x*) when x is feasible, but not optimal for (2.1a), that x* must also be a local minim

izer for the problem

min/^Cx). (3.2d)

Hence, as we shall now show, the function Fz(•) provides a very useful means for obtaining a first order

optimality condition for the problem (2.1a)6.

Now, suppose that given z e Rn, we approximate each function ty(x ,yy), ; = 0,1,2,..., m,

around z by the following first order convex approximation:

H(x ,yj) i <j/(z ,yj) +<Vx<J>>(z ,y}), (jc - z)> + V* ||x - z || 2. (3.3a)

Then yJ(x) is approximated around z by the first order convex approximation

5An examination of (3.2c) shows that the value of yand, in fact, the term v+(r) has no effect at feasible points. We shall
see later that their inclusion enables us to construct a phase I - phase II algorithm which does notrequire a feasible starting point.

Tn [Cla.1] the reader will find optimality conditions for (2.1a) in themore familiar form involving generalized gradients and
multipliers, emanating from the fact that if x* is optimal for (3.2d), then dF^ix* ,-x - x») a_0 must hold for all x e X. It is shown
in [Pol.3] that the conditions given in this paper, which were derived specifically for use in algorithm construction, are equivalent
to the ones in [Cla.l].
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\|//(x) £ max #(x,yy), y=0,1,2,... ,m , (3 3b)

and, in turn, Fz(x) is approximated around z, by the first order convex approximation

Fz(x) £ max{xi?(x)-V0(z)-W+(z)>^)-¥+(z). ;em}. (3.3c)

Referring to [Pol.3] we find the following first order optimality condition for (2.1a), where we find it

convenient to replace x in (3.3c) by x* + h:

Theorem 3.1 :[Pol.3] If x* is a local minimizer for (2.1a), then

GOT*) £ min />(;c* + h) =0 . (3 4a)
AeX-{x*} V y

•

It is shown in [Pol.3] that 8() is continuous; it follows by inspection that Q(x) < 0 for all x e R".

Furthermore, it is shown in [Pol.3] that at any xeRn such that 0(x) < 0, the vector

t\(x) ^ arg min A(x +h), (3.4b)
At 6 X - {x }

has the following property: if \|/(*) > 0, then r\(x) is a descent direction for y(); if \|/(x) < 0, then t\(x)

is a descent direction for \y°Q along which the constraints will not be violated for some distance. The

search direction function rj(-) can be shown to be continuous (see [Pol.3]).

Phase I - phase n methods of feasible directions, such as the ones described in [Pol.3], as well as

the optimal control algorithm that we will present, can be seen as progressively more complex imple

mentations of the following conceptual method, which we have derived by extension, from the Huard

method of centers [Hua.1], for solving (2.1a).

Algorithm 3.1 (Phase I - Phase II Method of Centers):

Parameters : y>l.

Data : x0 e Rn,

Step 0 : Set / = 0.

Step 1: Compute xi+x = arg min Fx.(x).
x e X '

18-



Step 2 : Set i - i + 1 and go to Step 1. •

Since Fx.(x,) = 0, Fx.(xi+x) < 0. Hence if y(xl0) £ 0 for some /0, then \j/(jc,) < 0 for all / >/0.

When all the functions are convex, it can be shown that the value of 7 controls the speed with which

the above algorithm approaches the feasible set, [x I y(x) < 0}: the larger y, the faster the algorithm

drives the iterates xt into the feasible set.

Theorem 3.2 : Suppose that for every x e R" which is not a local minimizer of (2.1a),

M(x) A mmFx(x')<0, (3.4c)
X G X

and that either X is compact or that the level sets of Fx(-) are compact If {*,• )/£o is an infinite

sequence constructed by Algorithm 3.1, then every accumulation point x* of {*, }/So is a local

minimizer for (2.1a).

Proof : First, referring to [Ber.l], we conclude that because of the compactness assumption, Af(•) is

continuous. Next, suppose that {jc, } ~=o is an infinite sequence constructed by Algorithm 3.1 which has

an accumulation point x* such that M(x*) < 0, i.e., x* is not a local minimizer for (2.1a). Then there

exists an infinite subset K c N such that the subsequence {xt } f- 6K converges to x*, and hence, by

continuity of M(-), there exists an i0 such that M(xt) <M(x*)/2<0 for all / >i0, i eK. Now there

are two possibilities.

First suppose that \fjfo) > 0 for all / e N. Then, because y(xl+i) - \|/(;c,) < M(*,-) £ 0 holds for

all /, the sequence {y(x,)}/So is monotone decreasing, and hence, since y(-) is continuous and since

{*i ) 1^0 has an accumulation point, the sequence {\|f(x,) }/So must converge. However, this contrad

icts the fact that y(xi+l) - \|/(*,) £ M(xL) < M(x*)/2 < 0 for all / >/0 ,ieK.

Next, suppose that there exists an ix such that yCx,-) < 0. Then, for all / >max[i0 , /i), we must

have y(xi+l) ZMM Z0 and y°(*.+i) ~vV,) ^Mfa) < 0, so that the sequence {\|/°(*.))«*> is

monotone decreasing. Since {*, }£0 has an accumulation point, the sequence {\|/°(jc,) }/So must con

verge. However, this contradicts the fact that \j/°(x«+i) - Vfo) ^ M(xL) £M(x*)/2<0 for all 1 >i0,

ieK.
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It should be obvious that the unconstrained minimax problems, in Step 1 of the Method of

Centers 3.1, are hardly any easier to solve than the original problem (2.1a). However, a very efficient

algorithm can be obtained by replacing the computation in Step 1 of this method by the approximation

indicated in (3.4a,b) and supplementing it by an Armijo type step size rule [Arm.l], as follows7:

Algorithm 3.2 (Phase I - Phase II Method of Feasible Directions) :

Parameters : y>l.ot. Pe(0,l).

Data : x0eRn.

Step 0 : Set / = 0.

Step 1 : Compute the the optimality function value G; = G(x,), and the corresponding search direction

% =T\(Xi).

Step 2 : Compute the step size A,,-:

\ =max {p* Ike N, F^x, + (3*%) ^ P*«9i } . (3.5a)

Step 3 : Set xi+i = x, + X^, set / = / + 1 and go to Step 1. •

The Armijo step size rule is well known to be efficient and is used in many algorithms. The sen

sitivity to the value of y and the convergence properties of the Phase I - Phase II Method of Feasible

Directions 3.2 are quite similar to those of the Phase I - Phase II Method of Centers 3.1 (for a proof see

[Pol.9]):

Theorem 3.3 : Suppose that for every x e X such that \y(x) >0, Q(x) < 0. If {x, }/So is an infinite

sequence constructed by Algorithm 3.2, then every accumulation point x* of {x, } /So satisfies the first

order optimality condition, for (2.1a), y(x*) < 0, 8(x* ) = 0.

Proof : First, we recall that it can be shown that both 9(0 and t)(0 are continuous. Next, suppose

7The phase I • phase II algorithms reported in [Pol.3] use adifferent step size rule when \y(x,.) >0 and when v(x;) <0- The
simplified algorithm in this paper (see [Pol.9]) is only slightly less efficient, because it evaluates the cost function at infeasible
points.
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that [xi }/So is an infinite sequence constructed by Algorithm 3.2 which has an accumulation poin x*

such that Q(x*) < 08. Then there exists an infinite subset K c N such that the subsequence {xk } ieK

converges to x*, and hence, by continuity of 8(0, there exists an i0 such that Ofo) < Q(x* )/2 < 0 for all

i >i0,ieK. Next, since dF^ (x* ;t\(x* )) < Q(x*), it follows that there exists a k* < oo such that

F* (x* + P** t\(x* )) - P** a.Q(x*) < 0 . (3.5b)

Since 8(0, tK), and Fz(x) are all continuous, it follows from (3.5b) that there exists a finite ix >/«,,

such that for all / e K, i >ix, Xt ^P** and hence for all / € K, i >i\,

F,.(*l+1) < P** a8(x* )/2 < 0 . (3.5c)

As in the proof of Theorem 3.1, there are now two possibilities. First suppose that yOc,) > 0 for

all i e N. Then, because \|/(jc,+1) - yOc,) < Fx.(xi+i) £ 0 holds for all /, the sequence {^(jc,) } /So is

monotone decreasing, and hence, since y(-) is continuous and since (xt } /So has an accumulation

point, the sequence {\|/0t|)}/So niust converge. However, this contradicts the fact that

V(*«+i) - ¥(*») ^ Fx.(*,+i) ^ P** tx6(x* )/2 < 0 for all / >/lt i € K.

Next, suppose that there exists an i2 such that y(xf-) < 0. Then, for all i >max{/i, i2), we must

have \|/(x,+i) < Fx.(^«+i) ^ 0 and \|/0Ct;+i) - \|/0(j:,) < Fx.(xi+l) £ 0, so that the sequence {\|/°0c,)} -So is

monotone decreasing. Since {*,- }/So has an accumulation point, the sequence {\j/°(;t«)} /So must con

verge. However, this contradicts the fact that v|/°(j:,+1) - \|/°(x,) £ p** oc8(;c* )/2 < 0 for all i >i2, i e Km

When the functions V() in (2.1a) are all differentiable, Algorithm 3.2 can be used direcdy.

However, when the functions \|/;() are max functions, then neither these functions nor the optimality

function 8(0 can be evaluated exactly on a digital computer in finite time. Hence, for such problems

Algorithm 3.2 must be viewed as a conceptual algorithm. To construct an implementable version, we

make use of the theory developed in [Kle.l], which allows us to discretize the intervals Yy adaptively,

as follows. For j = 1,2 m, let /,- = (bj -a;) be the length of the interval Yy-. Next, for any

positive integer q, we define the corresponding discretized versions of the functions used by Algorithm

3.2:

The case wherev(x*) >0 is eliminated by our assumption.
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Y„ Ala} .a,*ii- ,ai+%- bj} . (3.6a)

\fJq\x) k max V(x,y), (3.6b)
yeYM

Fq z(x) & max {vj(x) - y,°(z) - w,+(z). v/(x) - \|^+(z) . j e m} , (3.6c)

^'r(x) =- max #(x.y), (3.6d)
>eYA

Fq z(x) A max {$ r(x) - \}f°(z) - w,+(*).#*(*) - V*+(*). 7e m} , (3.6e)

Qq(z) 4 minF?z(x), (3.60

r\q(z) £ arg min F, ,(z +/i). (3.6g)
h 6 X — (r J

The following easy to prove result assures that the implementable version of Algorithm 3.2, to be

stated shortly, satisfies the requirements of the theory in [Kle.l].

Proposition 3.1: [Bak.l] There exists a K < oo such that for all z , x e X,

iy(x)-V#r)l£ —. y=0,l,2,...,m, (3.7a)
<?

\Fz(x)-Fqz(x)\ <; — , (3.7b)

l#C*)-#,C*)l * —. 7=0,1,2 m, (3.7c)
<7

l£(*Wf,C*)l <-, (3.7d)

iefr)-ef(x)i < —, (3.7c)

l|TKx)-r,,(x)||2<-^. (3.7Q
q

We can now state an implementable version of Algorithm 3.2 which increases the discretization

of the intervals Y; whenever the reduction per iteration in constraint violation, or cost, as appropriate,

drops below a preassigned level, which we will call e.
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Algorithm 3.3 (Implementable Phase I - Phase II Method of Feasible Directions) :

Parameters : q e N, e > 0, y >1, a, P e (0,1).

Data : x0eRn.

Step 0 : Set / = 0.

Step 1 : Compute the the optimality function value 8, = 9, fa-)* and the corresponding search direction

r\i =T\q(Xi).

Step 2 : Compute the step size X,-:

ki = arg max {p* I ks N, Fq x.(Xi + p*r,,) < P*a8t-} . (3.8a)

If

Fqx.(xi+V.k%)>-e, (3.8b)

replace q by 2q, e by e/2 and go to Step 1. Else set X,- = p '.

Step 3 : Set xi+i = xt + X,rj,-, set / = / + 1 and go to Step 1. •

When X = R", the search direction, %, in the above algorithm (as well as in Algorithm 3.2) can

be computed quite efficiendy using the algorithms in [Hoh.l, Hig.l]; when X is polyhedral, Polyak's

constrained Newton algorithm [Pol.10] can be used (see [Pol.5]), after (3.5a) has been converted to dual

form. Since the discretization rule that we have described satisfies the assumptions in [Kle.l], we

obtain the following result

Theorem 3.4 : Suppose that for every xeX such that x\f(x) >0, 8(x) < 0. If Algorithm 3.3 jams up,

cycling between Step 1 and Step 2, at a point xk, then xk satisfies the first order condition y{xk) < 0

and 8(xjt) = 0. If Algorithm 3.3 constructs an infinite sequence [xi }/So, then every accumulation

point x* of [xi }/So satisfies the first order optimality condition, for (2.1a), \j/(jc* ) < 0, 8(x*) = 0.

Proof: According to the theory in [Kle.l], because (3.7a) holds, we only need to show that for every

xeRn such that 8(x) < 0, there exist a p>0, a 6>0 and a q6 N+ such that for all

x € B(x, p) = {jc e X I || x - x || < p), if x, € B(x , p), q >q, and kt is constructed according to

-23-



(3.8a), then

FqXi(xi+tfiT\(xi)<-h. (3.9a)

Now, referring to the proof of Theorem 3.3, we see that for Algorithm 3.2 there exists ap>0, a5>0

and a k < oo such that for all x^ e B(x, p),

Fx.(Xi + pSto)) - P'aeCc,-) <-25. (3.9b)

Now, it follows from (3.7a-Q that there exists a q < oo , such that if q >q, x,- e B(x , p) and k% is com

puted according to (3.8a), as appropriate, then kt < k must hold. The desired result now follows from

the continuity of 9(0 and (3.7a-0- •

We will obtain an algorithm for solving optimal control problems of the form (2.2a) by formal

extension of Algorithm 3.3. First, to obtain a first order optimality condition for problem (2.2a), we

need to obtain an analogue of the expressions (3.2a-c), (3.3a-c) and (3.4a-b). Clearly, analogues of

(3.2a-c) are obtained by replacing x in (3.2a-c) by the pair (u , T). Next, the analogue of (3.3a) is seen

to be given by

U'.Au,T ,t) = gJ(zu'-TXt)) + (Vgl(zu''T'(t),Szu''TXt;u(t)-u'(t),T-T'))

l

+ V*f ||u(i)-u'(OII2df+V4ir-ri2, j =0,1,2,...,m, (3.10)

Next, the analogues of (3.3b -c) are seen to be

yi>,T<u,T) A max U',Au,T,t), y=0.1.2,...,« , (3<lla)

(3.11b)

The analogues of (3.4a-b), defining the optimality function 8(0 and search direction function rj(-, 0 are:

8(«'. 7") & min Fu> tr(u ,T), (3.12a)

TKu'.rO = arg min Fu',t<u' +u,T +T). (3.12b)

Theorem 3.1 assumes the following form for problem (2.2a):
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Theorem 3.5 : If (u* , T*) is a local minimizer for (2.2a), then

8(«*,7*) = 0. (3.13)

•

Since ty(u', T, t) = £y(zu,r(0)> our first observation is that expressions such as

dV((u' ,T' ,t) ;(u(t) - u'(t) ,T -T))= (VgJ(zu'>r(t)),8z*'r(t;u(t)-u\t),T^Ety)

can be computed using adjoints. Our second observation is that the numerical solution of ordinary or

partial differential equations requires discretization of at least one variable and hence that we cannot

utilize the analogue of Algorithm 3.3 without addressing this source of difficulty. To ensure that our

final implementable algorithm has the desired convergence properties, we must use discretizations in the

solution of the ODEs or PDEs which guarantee that the relations (3.7a - d) are satisfied, with x replaced

by u ,T. Again we receive guidance from the theory in [Kle.l], where the discretizations are worked

out for ODEs. Hence we will only consider the case of PDEs here. To make matters concrete, we may

assume that H is the space of /--times differentiable functions, z(s), from [0,1] into Rp.

q

First we introduce a set oforthogonal spline functions [r3q(.))2Jo <= H, for "spatial" discretiza

tion9, write zu ,T(t ,s) in the form

2*'
z"'T(t ,s) = £ #,(')<(' .u ,T). (3.15a)

and compute the projection nz0 of z0 onto the subspace of H spanned by the splines. Let

co?j =(g>° ,...,co, *), and let Zq be a matrix with columns ^ , / =0,1 2*1. Then (3.15a) can be

written in the shorter form

zu'T(t ,s) =Zqj(s)aqj(t ,u ,T). (3.15b)

On the subspace spanned by the splines, our dynamics have the form

9 For many dynamical systems, a system of second order PDEs, coupled with ODEs, is a more "natural" description than
(3.10a). In that case all calculations are carried out with the originaldynamics. As a result, since the weak form of a solution is
used, it is often possible to use splines that are only r/2—times differentiable, which results in considerable computational
simplification. Also, Newmark's method is then used for temporal discretization. See [Str.l] for details.
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Zqs{s)<»q{t ,u,T) = T[AZqj(s)(aqs(t ,u,T) + /i(Z?j(j)co,,(' ,u ,T),«(/))], (3.15c)

ZqM(s)(Oqj(0. u ,T) = nz0(s) , V* e [0.1] . (3.15d)

Next we use the orthogonality of the splines to set up the differential equations for the functions

<('.«. T):

i

(b $,u,T) = <C $),7f[AZ^)co (f,u,T) +h(Z ^)co ^ ,u ,7"), u(t))}) ds . / =0,1,2(3315e),2 f
o

l

coij(0,a,r)= f<C^(j),IIz0 (*)><& , 1=0,1.2,3 2*'. (3.15f)

Then (3.15e,f) can be written as a first order vector differential equation in which the function F(-, ) is

defined by (3.15c):

©(/) = TF(©(0,u(t),T) , Vfe[0,l], co(0) = co0 . (3.16a)

Finally, we discretize the normalized time interval [0,1] into 2q' equal intervals, set Aqt = 1/2*', and

replace (3.16a) by the difference equation resulting from the use of the Euler method of integration:

©((* + l)\t) =Q(kAqt) +TF((0(kAqt), u(kAq) ,T) , Vk =0,1,2,..., 2q', co(0) =(3tf6b)

We are now ready to relate this construction to the quantities defined in (3.6a-g). First, let

1 for t € [0, Aq ]

***>* "oforoA,, ' • (3'17a)

let Vqt c U be the set of controls which are constant over our time grid, i.e., if u(t)e Uqi, then for a

q

sequence of vectors {uk }^-o-1 c U,

2f'-l
"(0= Z ukPqt{t-kAqt) , (3.17b)

and, finally, let (aqi(kAqi ,u ,T) denote the solution of (3.16b) corresponding to a control in Uv If we

letY; A{i} for j =0,1.2 mu and Y* =Y&{0,-^-,-^- 1}, fory =mx +1, ...m,
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then,

for any u e Uq , we can define

\f*a >qi(u) = max g'^KZ^if. ,u,T)), j =0,1.2 m. Qlg)

Next, the sensitivities of the difference equation (3.16b) to perturbations in the control and scale factor

are given by the solution 8co<£ •T(t ,u ,T), of the linearized difference equation:

dF(u(kAqi),u(kAqt),T)
5co((* + l)A,f) = &o(k\) + T • 8<o(* Aqi)

dF((n(kA),u(kA),T)
+ T '— '• Su(kAqi)

+F((n(kAqi),u(kAqi),T)ST , Vk =0.1,2 2q', 5o)(0) =0. (3.19)

Hence, given any (u', T*), (u ,T)e U^ x T, we define

Ha ,,t v,rfiu ,T ,t) = *'(Z^<-r(0) +<V(Z?j<,r(<) •V<'r<' .'"(0" "'(0 'r " r#»
i

+ V&J \\u(t)-u\t)\\2dt +lA\T -T'\2,teYqt 7=0.1.2 m, (3.20)
o

In turn, these definitions lead to the following ones: Forany (u ,T)e U^ x T,

< ,q, <«'.r)(" . r) = max ty ff ^ (^,n(« ,r .0 . n2ia)

^ .,, («'.n(" .T) = max {ij£ tff (u,,n(u ,T) - y° if|(«', TO - W,, .,, +(u'. 7"),

< .*, («'.n(« .T) - \|/9x.^ +(«', 70. ye m} , (3.21b)

eff.f|(ii'.n £ (u ^min xT^f.,|0.'.n(« .7). a21c)

tu ,, («', TO = arg min F. ,, (a',T0(M' + " >r + r) • n 9i^Ht Ht («J)6U. xT-KJ) '',f^' ' (3.21d)

It takes some work to show that the following result is true (see [Bak.l]):

Proposition 3.2 : There exists a K < oo such that for any positive integer q, if max {qs , q, } > q,
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then for all (u'f T), (u,T)eU?/xT,

\VJ(u,T)-y{jiqt(u,T)\ <—, ; =0,1,2 m, (3.22a)

\Mw.H^,T)-^qttqiiu>>T^u,T)\<^, j =0.1.2 m, (3.22b)

l8(u.r)-8, Au,T)\<-, (3.22c)

||r1(tt,r)-r1^,,|(u.7')||2<^. (3.22d)

With these developments out of the way, we can now state our implementable optimal control

algorithm. A close examination will show that the algorithm below constructs a finite dimensional

problem, in which the design vector is the sequence of vector coefficients {uk }ks£l which defines a

control in U,,, to be solved by Algorithm 3.2 until the discretization test requires that the discretization

be refined.

Algorithm 3.4 (Implementable Phase I - Phase II Optimal Control Algorithm) :

Parameters : qs , qt e N, e > 0, y > 1, a, 0e (0,1).

a a

Data : A vector coefficient sequence u0 = (u§ .••• ,«2'"1)e Rp2\ defining the control u0(t) via

(3.17b), and a scaling parameter TQ.

Step 0 : Set i = 0.

Step 1 : Compute the the optimality function value 8,- = 8, ^(k, ,7;), and the corresponding search

direction r^ =r^ .^fa ,T,).10

Step 2 : Compute the step size Xi:

ki = arg max {p* I k€ N, F?j.^((u,-. Tt) + p*r,;) < p*a8,- } . (3.23a)

If

10 See [Bak.1] for an efficient procedure, based on Polyak's constrained Newton method [Pol.4], for computing both 9(- and
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Fqt.,,((«,, ri) +p\)>-e, (3.23b)

replace qs , qt by 2qs , 2qt, respectively, replace e by e/2 and go to Step 1. Else set

Xi =p\

Step 3 : Set (uM , Ti+l) = (u; , 7}) + X^, set / = / + 1 and go to Step 1. •

The convergence properties of the above optimal control algorithm are quite analogous to those of

Algorithm 3.3 and depend on Proposition 3.2:

Theorem 3.6 : Suppose that for every (u , T) e U x R+ such that \j/(k , T) >0, 8(u , T) < 0. If Algo

rithm 3.4 jams up, cycling between Step 1 and Step 2, at a point uk ,Tk, then uk ,Tk satisfies the first

order condition \\f(uk ,Tk)£0 and Q(uk ,Tk) = 0. If Algorithm 3.4 constructs an infinite sequence

{(Uj ,Ti)} -Iq, then every accumulation point (u* ,T*) of {(w,- ,Ti))£o satisfies the first order

optimality condition, for (2.1a), y(«* , T*) < 0, 8(u* , 7*) = 0. •

We recall that optimal control problems, such as (3.11a) do not necessarily have solutions in U.

Similarly, the sequence of controls ut{t) constructed by Algorithm 3.4 need not have accumulation

points in U. This difficulty can be resolved by showing that the conclusions of Theorem 3.5 are valid

in the space of relaxed controls (for a proof of this fact see [Bak.l]). Alternatively, one may resort to

arguments involving infimizing sequences, as in [Pol.6].

4. CONCLUSION

We have shown that nonsmooth optimization algorithms can be used for solving both open-loop

and closed-loop complex optimal control problems involving both open-loop and closed-loop systems.

By comparison with other methods in the literature, the design procedure that we have presented for

closed-loop systems has the advantage that it can deal with time- and frequency-domain specifications

simultaneously, including L1 -type specifications. Furthermore, it makes possible design by selection

and tuning of bounds on responses, which is a much more direct process than the use of weights com

mon to such methods as linear quadratic regulator theory. Of particular significance to the design of

finite dimensional controllers for flexible structures is the fact that our procedure does not require modal

truncation of partial differential equation models and that it therefore avoids destabilizing "spill-over"
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effects which plague many other approaches.

5. APPENDIX: EVALUATION OF THE CHARACTERISTIC FUNCTION

The design of a feedback system by means of a nonsmooth optimization algorithm, such as Algo

rithm 3.3, requires a large number of evaluations of the characteristic function %(x ,-a + ; co) and of its

partial derivatives with respect to xl for many values of to. Hence it is important to perform these

operations as efficiently as possible. In the discussion below, we follow the presentation in [Pol.2,

Har.l].

Referring to (2.16), we see that the evaluation of %(x ,s), involves the evaluation of the deter

minants del (sIHc - Ac(x)) and det(/ni + Gc(x ,s)Gp(s)). The simplest situation occurs when the matrix

Ac(x) is diagonalizable, i.e., when there exists a matrix of eigenvectors V(x) such that

ACc) = V(xTlAc(.x)V(x), where A(x) = diag(Xx{x) Xng(x)), with the Xj(x) the eigenvalues of the

matrix Ac(x). In this case, considerable computational savings result from the use of the two formulae

det[sln - Ac(x)] = det[sln - A(x)] = ]J[s - Xj(x)], (5.1a)

Gc(x ,s) = Cc(x)V(x)[sInc - Ac(x)TlV-\x)Bc(x) +Dc(x) . (5.1b)

When diagonalization cannot be used, one can simplify the computation of the required deter

minants by first reducing Ac(x) to upper Hessenberg form Hc(x) by means of an orthogonal similarity

transformation: Hc(x) = U(x)TAc(x)U(x), where U(x) is a Hermitian matrix. This results in

det[slne - Ac(x)] = det[sIHc - H(x)], (5.2a)

Gc(x ,s) = Cc(x)U(x)(sIne - H(x)TlU(x)TBc(x) +Dc(x). (5.2b)

Next we need to deal with the evaluation of the plant matrix transfer function Gp{-a + y'co) for

frequencies co. Since we do not wish to expose ourselves to spillover effects resulting from modal trun

cation, we propose to evaluate this matrix transfer function by solving two-point boundary value prob

lems which are most conveniendy produced by Laplace transformation of the original partial differential

equations describing the plant, and thus bypassing a transcription into the form (2.6a,b). We shall illus

trate this process by an example.
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The planar bending motion of a flexible beam of unit length, which is fixed at one end and carries

a particle with mass M attached to the other end is described by (see [Har.l]), can be described by a

partial differential equation of the form,

„iM^£i +c/i^£i +£/i^L£i . £ fIM*J), t >0 . 0Sxs 1, (5.3a)
ot ox at ox j~i

with boundary conditions

w(t ,0) =0, |j(/.0) =0, (5.3b)

• °2w (r.1) +d-^(t,l)+F/i^(U) =0, M^(t,l) - c/^£-(U) - £/|̂ (r,D =00.3c)
dxdt2^ " dx2dt" dx2"" ' dt2KyJ dx3dtK" dx

where x is the distance along the undeformed-beam centroidal line, w(t ,x) is the vibration along the

cross section principal axis (y-axis), f J(t) is a control force, C/(x ,xj) is the influence function of the

y-th actuator which is located at xJ, m is the distributed mass per unit length of the beam, c is the

material viscous damping coefficient, E is Young's modulus, M is the end mass, / is the beam sec

tional moment of inertia with respect to y-axis, EI is the beam flexural stiffness in the direction of y-

axis, / is the inertia of the end mass in the direction of y-axis, and n(- is the number of inputs.

The output sensors can be assumed to satisfy

i

(5.4)y'"(0 =Jk^v ,zl)w(t ,v)dv . t >0 , 1</ <, n0t

where n0 is the number of the sensors, and k*(v ,zl) is the distribution function of the /-th sensor and

zt is the location of the i -th sensor.

It can be shown that the plant described by (5.3a-c), (5.4) can be transcribed into the form

(2.6a,b) with the associated hypotheses satisfied [Gib.l]. In fact, the corresponding operator Ap gen

erates an analytic semigroup [Hua.2].

Taking the Laplace transforms of the partial differential equations (5.3a) - (5.3c) and (5.4) with

respect to time, we obtain, for each value of s = -a + j co, the two-point boundary value problem

involving an ordinary differential equation:
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(cfc +EI)d4W(x's) +ms2W(x .s) =J F'"W(x .*'), 0<*<1. (5.5a)
dx 7=1

with boundary conditions

W(s ,0) =0 , -^(*,0) =0 , (5.5b)
ax

(cl s+EI)^-(s .1) +/ j2^(* .1) =0, (c/ j +F/)4t<* .1) - Mj2W(j .l)(£Jb)
dx2 dx dx*

The Laplace transforms of the outputs are given by

l

r'(j) = te&.z'Wis ,v)dv , l<i<n0, (5.6)
o

where W(x ,s), FJ(s) and Yl(s) are the Laplace transforms of w(t ,x), f '(f) and yl(t), respectively.

Hence the (k ,/)-th element of the matrix Gp(s) can be obtained by setting Fl(s) = 1 and FJ(s) =0

for all other j, then solving (5.5a) - (5.5d), and evaluating (5.6) for / = k. The boundary value prob

lem (5.5a) - (5.5d) can be solved by means of shooting methods (see [Kel.l], [Pol.8]).

Next, we turn to the computation of the partial derivatives of %(x ,s). This requires the calcula

tion of the partial derivatives of det[s -Ae(x)] and det[/„. + Gc(x)Gp(s)]. When the eigenvalues

Xj(x) o(Ae(x) are distinct, they are differentiable [KaLl] and their partial derivatives are given by

dX;(x) dAc(x) „ v

-^={u''~oirVj),{u<'Vj)' (5-7a)
where v; and uj are the right and left eigenvectors, respectively, of Ac(x), corresponding to the eigen

value Xj(x). In this case, the partial derivatives of det[$/„ - Ac(x)] can be computed making use of

the following formula [Pol.2]:

ddet[sIn-Ac(x)] * a^OOi 5, d**(*) 1a? "£ <- ~ir2 *"».to)])-d«^ -A.W1 Z- ^ ,_Xj(4S.7b)

When the eigenvalues of Ac(x) are not distinct, the computation of its partial derivative requires a

more general formula which can be found in [Pol.2]. The computation of the partial derivatives of

det[/Bj. + Gc(x ,s)Gp(s)] can also be carried out by making use of a formula analogous to (5.7b), pro

vided that the matrix \ln. +Gc(x ,s)Gp(s)\ has distinct eigenvalues. When the eigenvalues of
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(7„. + Gc(x ,s)Gp(s)) axe not distinct, the computation of its partial derivative becomes considerably

more difficult Fortunately, this is not very likely to be the case in practice.
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