Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems in a number of different application areas. In this report, we explore communication-avoiding implementations of Geometric Multigrid on Nvidia GPUs. We achieved an overall gain of 1.2x for the whole multigrid algorithm over baseline implementation. We also provide an insight into what future GPUs need to have in terms of on chip and shared memory for these kinds of algorithms to perform even better.
Title
Communication-Avoiding Optimization of Geometric Multigrid on GPUs
Published
2012-12-14
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2012-258
Type
Text
Extent
12 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).