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ABSTRACT

Two-frequency electron cyclotron resonance heating (ECRH) is modelled by a four-

dimensional mapping derived from the nonrelativistic single particle equations of motion. The

model includes changes in parallel energy due to the spatially separate resonance zones, not

given by previous two-dimensional models. Fixed points are located and their linear stability

limits determined. Resonances in action space are calculated along with their widths and used

to obtain the adiabatic barrier to heating. Quasilinear diffusion coefficients are derived for the

stochastic regime and found to agree well with numerical calculations. The intrinsic diffusion in

parallel energy leads to axial losses in a magnetic trap which can rival those induced by colli

sions. An analytic model for this process gives a loss rate in good agreement with a numerical

simulation. Arnold diffusion along a resonance layer is also treated theoretically, yielding

diffusion coefficients in reasonable agreement with numerical values. A more complete four-

dimensional mapping is derived and used to modify the results from the simpler mapping to

determine the quasilinear diffusion rate into the loss cone and the rate of Arnold diffusion

through the adiabatic barrier for practical ECRH experiments.



I. Introduction

Electron cyclotron resonance heating (ECRH) is a well-established method of heating

1 2
electrons to high temperatures ' and an important component of several proposed fusion dev-

3 4ices. ' For these reasons ECRH has been widely used in plasma experiments and has
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motivated a number of theoretical studies. * Recent experiments using two or more sources

with closely spaced frequencies show a significant increase in electron energy density over the

single frequency result for the same total input power.

Several theoretical and numerical studies have been carried out to explain the observed

O Q

enhancement. Monte Carlo simulations by Samec et al. and by Rognlien show a significant

increase in the limiting particle energy EB and the diffusion coefficient near EB when two or

more frequencies are employed. The two-frequency diffusion coefficient was maximally

enhanced when the frequency separation was an odd multiple of the bounce frequency,

Ao> —(2m—l)o>6, m =* 1,2,3,... (1)

in general agreement with the experiment. Howard et al., ' using two-dimensional mapping

models, predict an approximate doubling of the maximum energy Eg over the single frequency

limit when (1) is satisfied.

In this paper we treat two-frequency ECRH more completely by means of a four-

dimensional mapping that includes perturbations in the parallel energy as well as in the perpen

dicular energy. This generalization allows us to examine the island overlap criterion in the full

phase space and to study the consequences of higher dimensionality, such as Arnold

12
diffusion, on the wave-particle interaction.

Early ECRH theories assumed that successive passes through each resonance zone were

uncorrected, implying quasilinear diffusive heating. On the other hand, a Hamiltonian pertur-

13
bative calculation predicted ordered motion in the absence of collisions. These opposing

viewpoints were resolved by a more complete analysis, which showed that either ordered or

stochastic motion could occur, depending on the heating parameters and the particle energy. A

single-frequency ECRH map was derived assuming narrow heating zones near the orbital
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turning points, and used to interpret an ECRH experiment. The ECRH map was also related

12
to simpler systems such as the Fermi map and the Chirikov "standard map."

In general, the two-dimensional phase space of an electron being heated by a cyclotron

wave in a magnetic mirror is divided into three regions; a stochastic region at low energies; a

primarily regular (adiabatic) region at high energies; and an intermediate region in which regu

lar islands are embedded in a stochastic sea. The lowest phase-spanning Kolmogorov-Arnold-

Moser (KAM) curve acts as a barrier to heating from below. The diffusion rate in the inter

mediate region drops off sharply from an approximately quasilinear value at lower energies to

zero at the KAM barrier.

Previous ECRH theory was extended to two-frequency heating by Howard et al., first by

employing the Fermi mapping as an analog to particle heating in a magnetic trap, and then by

deriving a two-dimensional two-frequency ECRH mapping. Both treatments showed that the

stochastic heating limit could be significantly enhanced using two frequencies by interspersing

the corresponding sets of phase space islands. The frequency condition (1) was shown to arise

naturally in both problems as a consequence of interleaving the second set of islands midway

between the first set of islands in the region near the single frequency barrier.

Experimental evidence for the existence of such adiabatic barriers is scant; two high-

power pulsed ECRH experiments, in which collisional effects are unimportant, appear to show a

2 11
heating limit consistent with theory. * Adiabatic barriers calculated for low field, large

volume, long pulse experiments are usually well below observed particle energies. However,

collisional effects and second harmonic heating may have played a crucial role in these experi

ments. The recent symmetric tandem mirror (STM) experiments using long-pulse power

divided among up to four closely-spaced frequencies show an increase in energy density over

the single frequency level, in general agreement with numerical simulations and theoretical

predictions based on the interspersal of resonances in phase space. The electron rings in STM

are produced by second-harmonic heating of a bulk plasma heated at the fundamental. The pic

ture that emerges from the theoretical and computational work summarized above is that using
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multiple frequencies raises the stochastic heating limit for the fundamental, thereby enhancing

the efficiency of fueling for second-harmonic heating, the diffusion coefficient for the latter

being an increasing function of perpendicular energy. Thus, the hot electron energy density is

increased.

The four-dimensional aspects of two-frequency heating treated in this paper are of interest

from the standpoint of nonlinear dynamics, as well as for their physical applications. In Sec. II a

simplified version of the four-dimensional ECRH mapping is derived and related to previous

two-dimensional mappings. In particular, the velocity dependences of A£"x and A2fn are

replaced by constants. This assumption retains much of the essential physics, while enabling us

to study four-dimensional effects with relative ease. Linear stability analysis of the physically

important phase space islands entails calculating the eigenvalues of a four-by-four symplectic

14
matrix. This is done analytically in Sec. in for a subclass of fixed points and numerically for

the general case. The adiabatic (KAM) barrier to heating is usually found from a resonance

12
overlap criterion such as the two-thirds rule. However, for our four-dimensional mapping the

resonances are staggered in phase, so that the usual overlap criteria do not apply. This problem

is analyzed in Sec. IV, yielding an adiabatic barrier in action space in excellent agreement with

numerical solutions of the mapping equations.

Another important consequence of the higher dimensionality of the phase space is Arnold

12
diffusion, which can move particles along resonance layers as well as across them. "Thick

layer" Arnold diffusion, which may be regarded a ordinary quasilinear diffusion, occurs in the

(mostly) stochastic region below the adiabatic barrier. This diffusion is an intrinsic process

driven by the dynamics rather than by an extrinsic source such as particle collisions. The

resulting diffusion in parallel energy drives an axial loss process in a magnetic trap at a rate

which can exceed that due to collisional loss-cone diffusion. "Thin layer" Arnold diffusion is a

subtle effect which causes particles to diffuse along the relatively thin resonance layers above

the adiabatic barrier. A potentially important consequence is that particles may leak through

the adiabatic barriers and be carried along resonances to arbitrarily high energies. The diffusion

rates for both thick and thin layer diffusion are derived in Sec. V. Section VI describes a mirror
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loss-cone model which gives the axial loss rate and the average energy of lost particles due to

thick layer diffusion. The results are shown to compare well with a numerical simulation.

Although all qualitative features of two frequency ECRH dynamics are given by the

simplified four dimensional mapping of Sec. II, quantitative values of energy limits and

diffusion rates in real experiments cannot be predicted. The energy dependences of the heating

coefficients (powers of perpendicular energy multiplied by Airy functions) are reintroduced into

the mapping in Sec. VII. The various requirements of a physical ECRH configuration on the

mapping are discussed, and predictions of heating limits for experimental devices are given.

The roles of the Airy functions in limiting the allowable frequency separation and in setting

barriers to diffusion are discussed. In Sec. VIII the diffusion results of Sees. V and VI are

applied to the more realistic ECRH mapping to determine the rate of diffusion into the loss

cone and the rate of diffusion to energies above the adiabatic heating barrier. This intrinsic

diffusion is compared with the extrinsic diffusion due to collisions for the STM experiments.

II. Mapping Model

A. Derivation of Four-Dimensional Mapping

Consider a trapped particle gyrating in a parabolic magnetic well

B - B0 (1 + z2/L2) (2)
with two closely-spaced resonance zones near each turning point, as depicted in Fig. 1. Assum

ing that the orbit initially penetrates the inner resonance zone, it will tend to turn there, since

for k\\ V||« c the wave changes vx , but not Vn . It is convenient to imagine a surface of sec

tion just inside the inner resonance zone at Z\ , as shown in Fig. 1. If all four resonances on

one side of the midpiane are well-merged, we may lump the two kicks at Z\ together to obtain

&EM = Axsin(9 - (o{t) (3)

where

9 = Jc„ dt W)
is the gyrophase and A\ is a function of v± and vn involving the Airy function. Similarly,

lumping the two resonances at Zi together gives



A£l2 — A2 sin(0 - (o2 t). (5)

As usual, we assume that the parallel energy is locally unaffected by the wave; however,

there is an indirect change in E\\ at Z\ due to the kick in E± at z2. Using the conservation of

magnetic moment vf/B and total energy between resonance zones, we readily find expressions

for the net change at Z\ after traversing n resonance pairs in an arbitrary concave well,

A*A - Z-J1 A^ (6)

Ar-1 Kk

where A2TXfc is the kick due to the kth resonance pair and Rk = Bk/BQ is the local mirror

ratio. For two resonance frequencies, Eqs. (3) and (6) give

A£x - A^int/r + —i- A2 sinty + f) (7a)
K2

A£„ - ^L |i„2 sin(* +£), (7b)

where Stu/^i = -^2/^1 "~ 1» an^

iflr = 9 - <«! r (8)

£ - -f8o>.

The phase slip between turning points in a parabolic well may be written

A, --i/^^jP^Bl, (9)
where p = 1 — 1/i? j. The half-bounce time in a parabolic well is

ytj - ttL(RxIEl)112 (10)
so that the change in the bounce phase is

A£ - -irZ, 8o> {RxlEjm. (11)

Equations (7), (9) and (11) constitute a four dimensional mapping which approximates

the heating process for a single pass through both resonance pairs. However, since A \ and A 2

are functions of E± and £n, this mapping is not area-preserving and therefore does not realisti-
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cally model the motion over many iterations. This deficiency is easily remedied by the addition

of small correction terms to the phase advance equations (9) and (11), as described in Sec. VII.

Here we treat A t and A2as constants, which greatly simplifies the analysis and numerical cal

culations, while retaining the essential four dimensional effects of multifrequency heating. In

this approximation the variables £x, t/r, (o>/8a>)£||, £ are a canonical set, yielding a symplectic

(and therefore area-preserving) mapping.

It is useful to modify this mapping in such a way that one of the phases is relatively

slowly varying. This may be done by introducing the slow phase

X = f-<r* (12)

with

o- "= , (13)
p O)

while retaining \\t as the fast phase. Making the necessary canonical transformations, we obtain

the new action variables

p -TOT^ +7^ (14)

1 - 7777 (£>£" (15>
where we have introduced the normalization factor

N - (l + \2€2)l/2 (16)

with

X = 1 + a- (17)

and

R{ A2

« - 7*71? (18)
After these transformations we obtain the symplectic mapping

P' =P+jj isiniff +€\ sin (X ^+x)3 (19a)
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and

J' - J + — sin (kift + x) (i9b)

At.vMJT
«' 2 («')

<r2M /'

2(110
where

* * "" T7 + T7-7T (19c)

X - . , ,,3 (19d)

TraxLpR{12

u2 ~ P-o-J (21)

is proportional to £x. The angle x is slowly varying for o* « 1. Note that updated values of

u and J are used in the phase advance equations. The dimensionless parameter M is related

to the total phase slip between turning points, analogous to the parameter M employed in pre

vious treatments of the single frequency ECRH map and the two-frequency Fermi mapping.10

The normalization N is introduced to approximately fix the total power in the two waves as € is

varied. The complete four-dimensional mapping (19) may be derived from the generating

function

SU>',frf,x) - P'* +J'X +jf (cosi/r +€COS(X</f +x)] - M. GP'-oV'). (22)
The mapping in the form (19) will be used in our calculations of Arnold diffusion. How

ever, for numerical calculation of fixed points, linear stability, resonances and adiabatic barriers

it is convenient to restrict X to rational values X =* r/s, with r =» 54-1 so that cr = l/s.

Introducing the new pair of conjugate variables

/ = s P (23)

0 =» ift/s

then gives a mapping periodic in #,

/' = / +-jj [sin (s<£) +€X sin(r0 +*)]
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/' = y+-^sin(r0 +x) (24)

* * M j. <r2 M J'<f> = 0 - cr— + 3
w 2(w')3

' » <r2Mf
X * 2(w')3 '

B. Reduction to two-dimensional mapping

The four-dimensional mapping may be compared with the two-dimensional two-frequency

Fermi mapping by expanding Eqs. (19c,d) in powers of cr « 1;

/' = / M . 3 M cr2(/')2 , ,_ _ ,
+ =*-JPyn+ UF)sa +'" <25a>

* *" KpW ''' ( }
Thus, to order cr , x = constant; Eqs. (19a) and (25a) then constitute a two dimensional

mapping with x and J as parameters. Taking x — 0 for convenience and reintroducing <f> we

have

P' = P + ~ (sin 50 + I sin r0) (26)

where e = X € and M = cr Mllir.

Except for the power of the action occuring in the phase advance, this mapping is identi

cal to the two-frequency Fermi mapping studied previously . Consequently, the general con

clusions reached in Ref. 10 apply to the present problem whenever the reduced mapping (26) is

valid. In particular, we can employ secular perturbation theory to expand about the two-

dimensional resonances to obtain the two-thirds rule for the overlap of neighboring islands,

t±Pi +LP1>^\Px-P2\ (27)
where APj and AP2 **Q tne resonance half- widths and P\ and P2 are the neighboring reso

nance values. For single frequency heating with € = 0, Eq. (27) reduces to the overlap cri

terion for the standard map, namely that the Chirikov parameter

•9-



K *P I? Ipn > l- (28)
Thus, the barrier to heating from below is approximately

PB =(\ti)V\ (29)
When the heating power is divided between two frequencies (e ^ 0) the KAM barrier

exceeds the single frequency value (29) by an amount that is maximized when the s-fold reso

nances given by sA0 «=» 2irw5 are interspersed midway between the r-foid resonances

rA0 = 2irnr at the stability boundary. For €5* 0, the factor K/N is proportional to the

square of the ratio of the resonance separation (Px —P2) to the resonance width for the s-fold

resonances, while X£ K/N has the same interpretation for the r-fold resonances.

The reduced mapping (26) is a fair representation of the full mapping (24) provided that

three conditions are met. First, the third term in (25a) must be small compared with the

second, which is true if (cr/)2 « 3P2 . Secondly, the cumulative effect of the neglected

terms over some specified time n must be small, i. e.

3M<r2J2 .. I
Psn «~n (30)

IFn- K< H' (31)
The second of these is the most important, since Ai/r can be an arbitrary function of P' and still

maintain area-preservatior, it may be written

3/2
r

an
crJ « -i-

•10-

Pb

where we have used (29). Thus, for P = PB the time over which the mapping remains two

dimensional is proportional to cr-2 J~K

(32)



III. Fixed Points and Linear Stability

A. Location of Fixed Points

To locate the fixed points in 0 and x we set A/ ™A/ — 0 in (24), which gives the

simultaneous equations

sin s* + €\ sin(r0+x) - 0 (33a)

sin(r0+x) -0. (33b)

Combining (33a) and (33b), we obtain sin 50 — 0, so that

0* - kir/s, k - 0, ±1, ±2, • • • (34)

Equation (33b) then implies

X* • -**. * ~ **• (35>

so that the period-one fixed points lie along diagonal lines in the 0 — x plane.

To locate the fixed points in / and /, we set

A0 --2ir/i, n =0, ±1, • • • (36)

Ax *° —2irm, m = 0, ±1,

or

ctM <t2MJ
u 2m3

(T2MJ

lirn (37a)

2«J

Combining (37a) and (37b) gives the fixed points in velocity,

2™. (37b)

_ o*M ,-oN
unm - » / .—r- (38)

2ir(n+m)

Using this result in (37) then gives
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where

. (n+3m)IQ
"" " («+m)3 ' (39>

_ 2m IQ

h=<r(j£)2. (41)

Recalling that / and J may be negative, we see that all n and m are allowed, the only restric

tion being /i+m > 0 to keep «, and therefore vx, positive.

For m — 0, J — 0 and therefore

InQ - Io/n2. (42)

Dividing (39) by (40) we obtain

/ . J + (m+n)J

-/ + /o'/im

Oi+m)2

or

hm ™4+m,0 + Am • (43)

Thus, the fixed points of / and J lie along straight lines of slope unity, with n+m —constant

along each line, as depicted in Fig. 2.

Figures 3 and 4 show two-dimensional projections onto the 7—0 plane for <r »• 1/4, M

- 500 and amplitude ratios € — 0.05 and 1.0. These surfaces of section were produced by

scanning along a number of initial conditions in /, with JQ «• 0 and (<£0»Xo) " (45°,135*!).

For these parameters we find stable "common" fixed points at I0n «=• 1583/a2 when € —0.05,

but which have evidently destabilized at € —1.0. The reasons for the above choice of (<£o>Xo)

and the instability at larger 6 will be given in the next section.

•12-



B. Linear Stability

It is helpful in interpreting the various two-dimensional projections of (24), such as Figs.

3 and 4, to understand the local stability properties of the fixed points of the full four-

dimensional map. This entails finding the eigenvalues of a 4x4 symplectic matrix, a problem

considered by MacKay . In this section we summarize the dependence of the linear stability

of the period-one fixed points on M> cr, and €. The detailed calculations are given in Appen

dix A.

The stability properties may be classified according to whether J ™ 0 or / ^ 0. We

have applied the method of MacKay to the relatively tractable case / « 0, obtaining simple

expressions for the stability boundaries. The more complicated case J ** 0 has been studied

numerically, and seems to result in less complicated stability limits, even though there are

many more terms to be considered in the stability matrix. We have studied linear stability at

three levels; first, by direct iteration of the mapping equations (24); second, by numerical com

putation of the eigenvalues; and third, analytically. We proceed by choosing a particular fixed

point (ImnJmn&kiXk)- Next we fix M and observe the effects of increasing amplitude ratio

€. A preliminary numerical search shows that only a few combinations of (7,/,0,x) need be

considered. First, all / =• 0 cases are basically alike (for all n) and all / ^ 0 cases seem to be

similar. In all cases only four combinations of (<t>k,Xk) are independent, owing to the invari-

ance of the mapping to the translation 0 —* 0 + 2ttct,x —* x ~" 2ircr. The two basic patterns

in (0,x) for the "normal case" € « 1, M » 1 are illustrated in Fig. 5 for cr •• 1/4,

J • 0, and 7^0, with the fixed points marked according to the observed stability. Thus,

there are only four distinct combinations of (0,x) with only one of these stable. For 7=0

the only stable fixed point has (0,x) " (45°, 135°) when € « 1 (Fig. 3), while for 7^0 it

is ©•ISO}.

As we have already seen in Fig. 4, the / =0, (45 °,135°) fixed point goes unstable with

increasing e. The stability boundary in the €—M plane is shown in Fig. 6 for cr «= 1/4. Above

a critical value, M2i stability is lost when € ^ 4/9; for Mx> M > M2, the motion is stable

•13-



to the right of the curve; for M > A/2, the motion is never stable. For 4/9 > € > 1 there

are no stable fixed points. When €>1, however, the (0°,180*0 fixed point is stable to the left

of the upper curve when Af3 > M > M4 , as shown in the right hand part of Fig. 6. Equa

tions for the / ™0 stability boundaries and the limiting values M\^M2<iM^ and A/4 are

given in Appendix A. We have also investigated the stability of the J^O fixed points by

numerical calculation of the eigenvalues of the stability matrix. The results for the

(m>n) -» (1,1), (0,x) "• (0°,180d), fixed point are shown in Fig. 7, which is characteristic

of all cases investigated so far. Above a critical value, Af6, the motion is stable for € > 1; for

Ms > M > M6 there is again a stability window; for M > M6 the motion is never stable. In

this case, the (45°,135 *) fixed point is always unstable, and no transitions occur at € =° 4/9.

IV. Resonance Effects

A. Resonance Corves

From the mapping (24) the principal resonances are

sA0 --2ir/iJ$ ns =0, ±1, ±2,... (44)

r A0 + Ax - -2irnn nr - 0, ±1, ±2, • • •,

corresponding to €—*0 and <», respectively. Substituting expressions for A0 and Ax from (24)

and solving for /, we obtain implicit equations for the resonance curves in the /—/ plane;

'• * ¥ (1" T") <«>cr ws0

jr - IXid (1 _ jlj

where

Us0 — -,_„ » urQ2irns y r 2trnr

Plots of / vs. J may be generated by treating u as a running parameter, with

14-



/ - / + u2/<r. (46)

Figure 8 shows a set of resonance curves for M — 500, cr — 1/4 and various nr and ns.

Note that the curves intersect for nr—ns =» 1,2, etc., the points of intersection lying along

straight lines of slope one. Since «r—n5 ™ /i+m, we see that the intersections of the reso

nance curves are just the fixed points (Inm,Jnm). These curves are of central importance in the

ECRH problem, as orbits tend to diffuse along them, and we have therefore studied their pro

perties in detail. It is easily shown that the maxima of Js lie along the line / a —/ and that

the maxima of Is lie on the /-axis, i.e., the ns curves cross the /-axis horizontally. The region

I > J is specifically excluded in iterating the mapping, since v2 > 0 there; however, / and J

are both allowed to go negative.

For 7 - 0 we can also locate s-fold and r-fold fixed points in the limits € —* 0 and

€-*<», respectively, as in the two-frequency Fermi mapping. Taking J » 0 in (44) gives

s2Io
h, - —r (47)

/ - r2/o

Note that these fixed points are period-one in the variables 50 and r0, respectively. These

islands have period p and q, where p/q is s/ns or r/nr reduced to lowest terms. The fixed

points (47) persist for 0 > 6 > °°, just as in the Fermi mapping, but it is not known whether

analogous fixed points exist for J'^0.

B. Resonance Widths

A non-stochastic orbit initially near a resonance curve will librate about the local reso

nance (PnJr) with an amplitude which may carry it into the sphere of influence of another

resonance. Knowledge of these libration amplitudes, or resonance widths enables us to predict

the form of the adiabatic barrier in the P-J plane.

-15-



In this section we calculate widths for the principal resonances (44) using the method of

averaging. The details of this calculation are given in Appendix B. The motion near one s-fold

resonance is shown there to be described by the Hamiltonian

H - - — (2P-cr/) +2irnsP +4; cos 0. (48)
u N

Since x is absent, / is a constant of the motion, so that the orbit oscillates vertically about one

of the s-fold resonance curves in Fig. 8. Over most of a given curve the amplitude may be

found by Taylor-expanding (48) about Pr to obtain

H-i(7(AP)2 +47COS0 (49)
2 N

where

G-^~=!*±IZ1 (50)
dP2 4w5

and we have defined

#0--— (2/>-ov/).
u

From (49) one easily finds an expression for the separatrix, which yields the half-

amplitude

Ai»mu[-(-^)1/2. (51)

The difficulty with this approximation is that G—0 at the extremum of the resonance curve,

where / ** /max. In this region the upper and lower branches of a resonance interact strongly,

first reconnecting and then annihilating. This problem has been considered by Howard and

Hohs and the application to the present problem is described in Appendix B. A corrected set

of widths is shown in Fig. 9 for M «• 100, cr "• —, € ™ 1, and several values of ns. Note

that the widths vanish when / «• 7max.

The calculation of the r-fold resonance amplitudes is complicated by the fact that

J ™ J—P/X is a constant of the motion, rather than / itself. Consequently the libration is

-16-



along the direction P/J => X. After some manipulation one finds a simple equation for the

amplitude,quite similar to the s-fold width, as described in Appendix B. Figure 10 shows a set

of r-fold widths for the same parameters used in Fig. 9. Overlaying these two figures accurately

determines the barrier to stochastic motion, as described in the next section.

C. Adiabatic Barrier

We wish to estimate the manner in which KAM surfaces limit heating from below in the

action space (/,/). For small /, the approximate two-dimensional mapping derived in Sec. II.B

gives a useful expression for the KAM barrier based on the overlap of neighboring island

chains. For the complete four dimensional mapping we can obtain an approximate barrier by

writing a local two-dimensional map for each value of J and applying the two-thirds rule to

compute Ig(J). The complete barrier for € a 1 is then given approximately by the upper edge

of the set of overlapping resonance bands in Fig. 10a-b. Strictly speaking, a factor of 3/2

should be used in computing the resonance widths to conform to the two-thirds rule for over

lap, but is omitted here. This is partially compensated for by the fact that the resonance widths

in Fig. 9-10 are calculated assuming all of the power is in each frequency (N—1). Figure 10

shows the results of a number of single orbits for € = 1, initialized 5 units above the I — J

line at intervals A/ =• 2.5. Superimposed are the resonance width curves from Figs. 9-10.

The upper bound of the data is seen to closely follow the calculated upper edge of the overlap

ping resonance bands. Arnold diffusion can cause penetration of this barrier but as we shall

show in Sec. V, the time scale for this process is much longer than the times corresponding to

the numerical data.

V. Intrinsic Diffusion

A. Quasilinear Diffusion

In the region of strong resonance overlap, the motion is chaotic and can be described by a

Fokker-Planck equation in the actions alone. Letting f(I,/i) be the distribution function of the

action I «• (I, J) at time step n, we have
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A£ - -JL (52)
aw ai

where

T - -D •|f (53)
91

is the flux and D is the diffusion tensor. Making the random phase (quasilinear assumption,

the components of D are

Du - <(A/)2>*X

£>u - Dji - < A/AJ > tx (54)

Djj - <(A/)2>0X

where < > $x denotes the average over both 0 and x and A/ ™/'—/, A/ ™/'—/ in

(24). After averaging, we obtain

Dn - -4r (1 +62 X2)
77 2JV2

Using (24), we find

hj "ST

J>xr
€2

2JV2'

To obtain isotropic diffusion we introduce the skewed coordinates

(55)

€ - - e\J (56)

/.

€A.y * -f-sin(50), (57)
N

Ax — -77 sin(r0+x),
N

and averaging over the angles we obtain the isotropic tensor
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D„-D„ =D0 - ^1 (58)

D =» 0.

These results will be used in Sec. VI to investigate enhanced axial losses due to diffusion into a

mirror loss cone.

A numerical calculation of the diffusion tensor has been made in order to verify the

quasilinear assumption. Rgure 12 shows cr2/)//, cr/)// and Djj versus the number of

timesteps n for 1000 initial conditions with random phases at /0 - 100 and J0 - 10. These

initial conditions are well within the region of strong resonance overlap for the chosen system

parameters M — 2 x 104, e —0.8, r - 5 and s - 4. The quasilinear values (solid lines) are

seen to lie close to the computed data for small n. For large n there is a tendency for the

computed value of Du to fall below its quasilinear value. This is due to the presence of a

reflecting barrier at u - 0(/=s/0 "" 1Q)- For n ^ (Iq-Jo)2/(2Djj) = 500 the computed

mean square displacement <(A/)2> is reduced by these reflections. Indeed, since Djj <<

Djj and there also exists an adiabatic barrier at large iUg^ I860 from Eqs. (23) and (29)],

<(A/)2> cannot grow indefinitely. Thus the computed value of Dn must fall as fl-1 for large

n.
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B. Thin Layer Arnold Diffusion

For four dimensional mappings such as (24), an initial condition chosen within the thick

stochastic layer (I—J^O) can diffuse above the adiabatic barrier. This process, known as

Arnold diffusion, can provide a mechanism for heating particles above the barrier.

12
To calculate the Arnold diffusion rate, we use the three-resonance stochastic pump model

in a region above the adiabatic barrier, Iq, where the resonances do not overlap. For conveni

ence and to maximize the diffusion rate we choose a "guiding" resonance just above the adia

batic barrier and use initial conditions having J«I. The stochastic motion along this isolated

resonance (mainly along J) is known as "thin layer" Arnold diffuson and is driven by the

interaction of the two resonances nearest in frequency to the guiding resonance.

As an example we calculate the Arnold diffusion coefficient along the isolated guiding

resonance

r0 + x + 27T/ir - 0, (59)

which lies between the two nearest "driving" resonances

s0 + 2ir/is = 0, (60)

and

50 + 2ir(/is + 1) - 0 . (61)

The calculation involves several canonical transformations and is given in Appendix C. From

Eq. (C20), we derive the diffusion coefficient DA for the diffusion ofthe transformed action 7

[see Eq. (C7)] which is conserved in the absence of Arnold diffusion.

We compare this result with a numerical calculation of DA obtained by iterating the map

ping (24) for a set of 20 initial conditions having slightly different phases but the same values

of / and /. We choose M - 240, nr •• 7, ns «• 5, r «- 5, s —4, and € - 3. This places the

guiding resonance nr just above the adiabatic barrier and approximately midway between the
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two guiding resonances ns and ns+l. These choices lead to a reasonably large diffusion rate.

As shown in Fig. 13, after about 104 iterations of the mapping, the numerical value of DA set

tles down to approximately 5 x 10~6, where it remains for the 106 iterations of the map which

were explored numerically. The initial transient behavior of DA arises because / is only approx

imately a constant of the motion for the complete mapping which contains many (not just

three) resonances. From Eq. (C20), the analytical value of DA is 6.2 x 10~5 . This is not

unreasonable, considering the limitations of the three resonance theory (see for example Ref.

12) and the sensitive exponential dependence of the analytical result on the linearized fre

quency of the guiding resonance and the frequency separation between the guiding and driving

resonances. These frequencies were chosen to maximize the diffusion rate in the analytical

theory.
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VI. Enhanced Axial Loss due to Intrinsic Diffusion

We now consider the enhanced loss that results when a loss cone with mirror ratio /?£ is

present for two-frequency ECRH. For heating at a single frequency with local mirror ratio

Rx < RL, the heating acts to increase the local £x, while the local Ett remains unchanged.

The addition of a second heating frequency causes a diffusion in £N. If A£n becomes large

enough, then the particle will turn at R > RL and be lost from the confinement region. This

mechanism may be much stronger than classical pitch angle scattering in producing diffusion of

En-

To examine this process, we consider quasilinear diffusion of EL and Ett using the ideal

mapping (24). For these equations, £x and £„ are related to / and / through Eqs. (14), (15),

and (23). Transforming to variables x,y given by (4.5) in which the quasilinear diffusion ten

sor is isotropic, we consider the two-dimensional steady state model problem illustrated in Fig.

14. Here the distribution function / satisfies Laplace's equation, which in cylindrical geometry

is

r d r a r +7^=° (62)
where y =» r cos 9, x = r sin 9. A delta function source is assumed to exist at r = d,

9 ~ 9X, and a simple form for the adiabatic barrier to heating is chosen; namely, a circular

boundary at r = rB. This boundary is assumed to perfectly reflect particles; i.e., df/dr = 0

at r = rB. The choice of a circular boundary is a crude approximation to the actual shape of

the adiabatic barrier, and will be justified later. To model the exponential decrease in the Airy

functions for Ett < 0, a perfectly reflecting barrier is chosen at x = 0, i.e., B//B9 = 0 at

9 = ir/2. The loss cone boundary is found from conservation of energy and magnetic

moment
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*i Rl '

which yields

E\\-PlEl " 0, (63)

where pL=RL/Rx—l. Transforming (63) to the x,y variables (56), we obtain the loss cone

boundary

y = -€(l-kL)x, (64)

where

x _ 8o> 1 , v

*>i Pa

is typically much less than unity.

In describing the particle loss at the loss cone boundary, we must take into account the

finite step size of the ECRH diffusion process. In the absence of a loss cone ( R^—*«>), we

have reflected all particles which step below the Ex = 0 line

y =-ex (66)

when numerically iterating the simplified mapping (24). When a loss cone is present, some

particles may step into the loss cone region and be lost, but others may step across the loss

cone region below the £\ = 0 line and thereby be reflected. To model this process, we first

estimate the value xQ on the loss cone boundary above which all particles stepping across the

boundary are lost and none reflected. From (57), the maximum step across the loss cone

boundary is rA0 = e/N. The arc length between the loss cone boundary (64) and the

£\ = 0 line (66) is, for kL «1,

r&9 = =
(l+€2)1'2

Equating these two lengths we obtain
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(l+e2)1/2
* - mi- (67)

For x > Xq, all particles which step across the loss cone boundary are lost. For x < Xq,

a fraction proportional to the ratio x/xQ are lost. One model for the loss cone boundary condi

tion is to choose / = 0 for x > Xq and approximate the boundary condition for x < x$ as

f W f~D» 7If - °" ™

Equation (68) yields the proper "thermal" flux for x = Xq while making the flux vanish for

x«Xq. However, this leads to a mixed boundary value problem which can only be solved

numerically. We opt for a simpler approach by choosing / =» 0 everywhere on the loss cone

boundary. After obtaining / analytically, we decrease the particle and energy fluxes across the

loss cone boundary by the ratio x/xq for x < Xq. These fluxes are then used to determine the

mean loss rate v L and the mean energy EL of a lost particle. This procedure yields reasonable

values for v L and EL and allows the scaling of vL and EL with the system parameters to be

obtained analytically. The procedure is justified by comparing v L and EL with the results of a

numerical simulation of the loss process.

The solution to the boundary value problem is given in Appendix D. The average energy

lost per particle is found from (D16) and (D17);

El =

and the mean loss rate from (D16) and (D18),

v, —

Pl_

1l
N'

To compare these with the results of numerical simulation, we have chosen € = 1. In this

case, from (D2) and (D7), 90 = tt/4 and a0 = 2/3- Then JL = £^/A and tl = v~[} are

given by
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for r0 < rB\ and by

= T 'oW r^

1-1(12.)1/3
4 'a

1-|<—)l/33 r5

Tr =»
3 2/3 4/3

/*0 rB
%D

l-I(il)2/3
3 rs

J'*

T, »
16£>, *b 'o

(69)

-l

(70)

(71)

(72)

for rQ > rB.

For the important case rB > r0, we see from (69) that /£«rj/3. Thus, the exact loca

tion or shape of the adiabatic barrier is not important in determining the average energy lost per

particle. However, rLccrB^ and therefore the mean loss time more than doubles if rB is dou

bled. This variation arises because / decays slowly (<xr~2^) in the wedge. Thus, as rB

increases, for a fixed source, the particle number N increases, leading to longer confinement

times.

The actual adiabatic boundary is determined from resonance overlap conditions as

described in Sec. IV C. A numerical example of a thick layer stochastic region bounded by an

adiabatic barrier is shown in Fig. 15. It consists of a large block for /<20 and a strip lying

between the lines I — J and /=/ + 30 for ./>20. When this region is transformed to the

x,y space the block transforms roughly to a 135° wedge having mean radius rB = 15, and the

strip transforms to a strip lying between y = —x and y = 7.5—x that is attached to the

wedge. Since / — 0 on the boundary y = —x of the strip, / decays away from the wedge

into the strip with characteristic e-folding distance 2w/ir where w = 5 is the width of the

strip. Thus, the total number of particles stored in the strip is small compared to the number

stored in the wedge, and the presence of the strip may be neglected. A circular boundary is

-25-



thus a reasonable choice for the adiabatic barrier in Fig. 14.

To compare the theory with numerical results we choose e = 1 (0O *• ir/4), \ =» -r and
4

kL « ——, the latter corresponding to a loss cone edge, using (64) and (56), at / =• 1.257.
lo

We then obtain from (67) x0=14.1 and r0 = jc0secd0^=20.0. From (29) and using (56), the

adiabatic barrier for / =0 is at yB =» (M/2)2/3. We estimate that the effective radius of the

wedge is 1/V5 times this value; rB = 0.44Af2/3. For these values of r0 and rB> we determine

JL and tl from (69) - (72) for various values of M. The results are shown as the solid lines

in Fig. 16.

For the numerical computations, we determine Ji and rL for the initial conditions

/ = 10,/ = 1, with initial angles chosen at random. Up to 500 different initial conditions

were used to obtain average values for JL and rL. Each initial condition was iterated using the

map (24). Particles which stepped below the loss cone edge / = 1.25/ were reflected in / if

they also stepped below the £x •» 0 line / — /, and were removed (and computation ended)

if they fell into the loss cone between the / = 1.25/ and / = / lines. Particles stepping into

the / < 0 region were reflected in /, corresponding to the condition that the particles do not

turn before reaching the resonance zone. The numerically calculated values are shown as cir

cles in Fig. 16. The agreement with theory is reasonably good for both JL and tl, the latter

quantity being somewhat sensitive to details of the dynamics near the adiabatic barrier. These

results will be compared with collisional losses in Sec. VIII B.
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VII. Modifications Required for ECRH Mappings

In this section we consider some implications of our results for ECRH experiments. In

order to do this we must re-introduce -certain features of the ECRH problem that are not

included in the idealized mappings of the previous sections. In particular, the £x and

£ii(P and /) dependence of the energy perturbations must be considered.

A. Improved Mapping

We consider as before the heating approximation in which the net kick that a particle

receives both on entering a resonance zone and on leaving after reflection is lumped into a sin

gle value. Then a Taylor expansion of the magnetic field in the neighborhood of the turning

point leads to the kick at a resonance zone (expressed in local variables at the resonance point),

8£x = 4tt -2- &
m

2B

(dB/dz)t(ol/2

2/3

J0(kj>) El/6Ai(x) sin iff (73)

where £ is the electric field amplitude, the subscript t denotes eval

uation at the turning point, unsubscripted variables are evaluated at

the resonance point, k^ is the perpendicular wave number, p is the

gyroradius, Ai is the Airy function, and

2B

where

x =-(n,-ft>)
vj*x,2(dB/dz)t

Henceforth we assume kj) « 1 and so replace Jq by 1.

We add together the effects of two frequencies, transforming the kick in £x due to the

second frequency to £x,£n variables at the first resonance point as in Sec. II. The result is

1/2

2/3

£'x = £x + a (xAi(xx) sin \\s +£2
B.

Ai(x2) sin(«£+£)

£'„ - £„ +a —$2 £,

B,

1/2

Ai(x2) sinOif+£)

2By
2/3

a = 4tt —
m (dB/dz)^2

£,1/6
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and subscripts 1, 2 denote evaluation at the first or second resonance point, respectively. The

variables i/r and £ evolve as in Eqs. (9) and (11). The Airy function Ai(x) has three regions

of interest: (1) For turning in the resonance zone (-1 < x < 0) the Airy function is approxi

mately constant. Then A£xoc £j/6, giving aslightly different mapping from Eqs. (19); (2) For

particles turning before resonance (x > 0) the Airy function decays exponentially as

Ai(x) cc x l/4exp -4 x*2 , X » 1 (77)

resulting in a rapid drop of the interaction strength of a second resonance at higher frequency.

(3) For particles penetrating deeply through resonance (-x >> 1), Ai(x) oscillates about zero.

For a single frequency and single wave-vector the Airy function zeroes can prevent certain

classes of particles from being heated. However, when -x > > 1 the "lumped" approximation

fails; treatment of resonant interactions before and after reflection as separate kicks leads to the

conclusion that Airy-function zeroes are barriers to diffusion only at energies near the adiabatic

barrier. These phenomena and their implications for heating are discussed below.

For all the above cases the mappings given by Eqs. (75), (9) and (11) are not area

preserving. This leads to spurious effects associated with dissipative mappings, not consistent

with the Hamiltonian nature of the ECRH physics. This problem arises because the phase-

advance equations are not calculated to sufficient accuracy. Stated another way, the derived

approximate mapping is only approximately area-preserving,

(OB(E±,— £„, 0, f)
0(0

B(E±, -^- £„, t/>,£)
0(0

= i + a E,
BilnaAi(x)]

BE±
(78)

whereas the exact equations are exactly area preserving. In doing numerical experiments it is

important to maintain area preservation in order not to introduce qualitative changes in the

solution. This has already been noted in connection with a two-dimensional ECRH study5.

Area preservation can be maintained by adding appropriate first-order phase-dependent

terms to the phase advance equations. Then, following Sec. II, we introduce the slowly varying
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phase x = £ —(28a>/a>p)0 and transform the (now canonical) variables (£x, (<o/8a>)£,|, iff, £)

to the normalized set (PJ, iff, x) where £x = C(P-o-J), £t| = C(8(o/(o)J, and

The result is:

where

6/5

2 *1
3/5

C = ,4/(0)
477 e

m
ft + ^

B,

2£,

(dB/dz)X(o{/2

'If' l/3
P' = P + —T7-t^'i sin i/f + €\ a/2 sinOuJf + *)]

M -

/'«=/ +^-rp €Sin(\i/r -I- x)

^-♦-4 +^ +c^r);

. x- °^z: + upt):
2w'J

37T

n1'2 7 «7T/<i W^p
3710

2£,

4/5

,4/(0)
47Tg

m *? +«T (dB/dz)X(oln

(79)

(80)

Us
(81)

and 6 - (S2/fO(Bx/B2)l/\ N2 = 1+ €2\2, u2 = P - <rJy U = u2/(P - <r//2)1/2,

fl/y = Ai(xj)/Ai(Q)y and the area-preserving terms are

C4P7\ -~jjjp (Ul/iaix) cos *- -^ -^ (£/1/30/2)cos(\«/r +x) (82)

UP7% - -™ 4l (U{/3ai2) cos (x* +x) •

Note that in these variables the arguments of the Airy functions are

<rJ*i = -(2M/tt)2/3
2u2(P-<rJ/2)l/3

x2 - -(2JI//ir)*3 "V-"*}^
2u2(P-<rJ/2)m
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We now discuss in more detail the consequences of the modified map (80).

B. Scaling Considerations

For practical applications of the calculation of the KAM barrier to heating for one or more

frequencies we use the scaled ECRH mapping, Eq. (80), for —1 < x < 0, and consider

the behavior near 7=0 (turning at resonance). The small area-preserving phase correction

terms may be ignored in making analytic estimates of heating barriers. For a single frequency

and J = 0, the resulting two dimensional mapping in a parabolic well is

AP = Pl/6 sin i/f

A* « JL (84)

where

2liVAi(0))3l$ '

with A a dimensionless parameter which varies with experimental parameters,

A- J2s£k . (86)
eE

Note that the definitions of M and P differ from those in Sec. II.

As in Sec. IV we obtain the normalized barrier energy from the two-thirds rule, (27). For

a single frequency with J = 0 this reduces to (28), which for the mapping (80) gives

PB = (Af/2)3/4 (87)

The power of the M dependence is different from that in (29).

As in Sec. II we can also make a simple estimate of the maximum increase in the heating

barrier that can be achieved by dividing the available power between two frequencies. In this

case, resonances 1 and 2 in (27) are the interspersed resonances of the two frequencies. At a

given value of action the interspersal halves the distance between resonances and the constant

power condition reduces the resonance size by 2 . Since bPccP3/2 and APcc/>5/6, (27) is

marginally satisfied at a ratio of final to initial values of P given by
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J'B
5/6

» 2"3/4 JL
?<B

which gives an increase in action (energy) at the barrier

PfB a 29/8
P,B

3/2

(88)

(89)

C. Overlap of Resonance Zones

Because the particles tend to turn within the inner (lower frequency) resonance zone the

effect of the outer (higher frequency) resonance is diminished by the exponential fall-off of the

effective energy kick. Therefore, an additional condition to be satisfied for two frequency heat

ing is that the interaction zones of the two resonances overlap. That is, we must have x£l for

the outer resonance at the turning point corresponding to the inner resonance. Since

1 dB

we have, using (74),

where

b =

(o2 =* (0X (1 +
B dz

Az)

Aft)
x(

1 dB vx_lL)2/3
B dz 2&> '

Substituting (85) for M (parabolic mirror) in (90) then gives

*3/1°

Aft)

ft)

l~T

£2/3 pl/2

C M2/3

6/5
R

R-l

1/3

2[*TrAi(0)]3/t [4iM/(0)]2/3

(90)

(91)

To find the value of Aw/cd at the adiabatic barrier for a single frequency, we use (91) to

obtain

Aco

co

x

2i/4c Msin (92)

Requiring that |jc| ^1 and taking a model problem with R =2, (92) becomes
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We have previously derived an interspersal formula for r =5+1 and nr = «5+w, where ns

and nr are the number of 27T phase shifts per mapping period (1/2 bounce period), which for

large ns is

5 " 2^T *

Letting m — 1, w5 = s/2, and using the fixed point condition

-pm ~ 27rn*

together with the barrier condition (87) we obtain

s = — M5'*. (94)
7T

Combining (93) and (94) and observing that 5 =» [(R— l)/2R](o/A(o = (o/(4Aw) we obtain

the range of M for which spatial overlap of resonance zones occurs, while simultaneously giving

island interspersal at the barrier. We find M ^ 28, which is satisfied for machines of current

interest (see Table 1 below), and does not present a serious restriction on device parameters.

Table 1 gives the derived values of M, the maximum Acu/cd for overlap of resonances

zones, the corresponding o-, PB, and barrier energy £x# for parameters representative of STM

and MFTF-B. Note that for MFTF-B the calculated barrier energy is relativistic, although the

map (80) is nonrelativistic.
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D. Effect of Zeroes of Airy Functions

For particles turning beyond resonance, the argument x of the Airy function in Eq. (73)

is negative and so Ai(x) oscillates as a function of x. In particular, Ai(x) has an infinite set of

zeroes xk, which arise from interference between the velocity kicks a particle receives upon

crossing the resonance zone before and after turning. Mathematically the Airy function is

obtained from perturbation theory in which the equations of motion are integrated through

both resonance passages, ignoring local variations in £x, and E\\ (P and J). In terms of a

two-step model with discrete kicks before and after turning, the Airy-function approximation

corresponds to calculating the phase slip 5</r between the two kicks neglecting the change in

(PJ) that occurs at the first kick. Consequently, the condition for complete destructive

interference (k zero of the Airy function) is that P be a certain function of 7, P «= Pk(J)>

independent of \\t> x and the wave amplitude. Thus for single-frequency (o>x) heating in this

approximation, P = Pk (J) is a KAM curve in the P—\\j phase plane, independent of the wave

amplitude, and so always constitutes a barrier to diffusion. Furthermore, for any finite wave

amplitude (finite M), there is a non-stochastic layer about P =» Pk given approximately by the

condition K(P) < 1, where K is the Chirikov parameter K = (AP/sini/OdAi/i/dP. In P-J

space, the family of curves P—PK(J) in general intersect the heating characteristics (J =»

const, for the case e = 0) at finite angles, and so constitute barriers to diffusion. In this

approximation, adding a second frequency has a profound effect: the zeroes of Ai(x2) are not

coincident with those of Ai(xx) except at isolated points in P-J space; thus a particle can

diffuse across a xero of one Airy function under the influence of the second frequency. The

diffusion is merely reduced from two-dimensional (in P—J space) to one-dimensional near a

zero of an Airy function. This is the basis for Samec's interpretation of the effect of multiple

frequencies .

In a more complete picture nonlinear effects lead to a destructive interference condition

which depends on «/j, x afld the wave amplitude. In the two-step model, 8t/f depends on iff, x

and the wave amplitude. Consequently, the condition for net zero displacement after both pas-
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sages through resonance is now P = Pk(J,ty,x), and is no longer guaranteed to be a KAM

curve. Studies of asymmetric two-step maps indicate that the non-stochastic band about

P = Pk disappears and P = Pk ceases to be a KAM curve approximately when the step size

(maximized over if) ) for a single step of the map exceeds the width of the K < 1 layer calcu

lated by combining two successive steps and neglecting the intermediate change in P (the

Airy-function approximation for ECRH).

To apply this criterion to the ECRH problem, we must (1) calculate the width of the K <

1 region in the Airy-function approximation, and (2) evaluate the step 8P on a single passage

through the resonance zone. We do this here for the (ox resonances and a-J « P. To deter

mine the width of the K < 1 region about the zero of the Airy function, we first determine K

from Eqs. (80) with € = 0,

K =\4?-*M-\ =1M p-^ai .
1sin* BP 2 l

We assume MP~4^»l and so calculate the width of the K =» 1 region about a zero of

aix by Taylor expansion of the Airy function. Hence

^P)^SM\ai[(dxx,dP)\ (95)
3 P1*

2M \xai'x\

where ai'x denotes d(aix)/dx. To calculate the change 8P due to a single passage through

resonance, we integrate the equations of motion after expanding about the resonance point

rather than the turning point. The resulting counterpart to Eq. (73) is [see, e.g., Ref. (19)]

Cjp rl/2

8£x =2^2 -LE , ," \r sin* . (96)
1 m (ox(dBx/dz)l/2 £,}/4

Converting to P,J variables, taking the peak amplitude of sin *, and again evaluating for

o-y«P, we find:
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pl/6

*P = ,n , x, ,i/i • (97)
2ir1/2^/(0)|x|l/4

If we now track a particular zero of the Airy function we observe that 8P is less than

(AjP)^„!, and thus the Airy function should constitute a barrier to diffusion if P is greater

than Pc, where

c *»u[3Ai(0)]6m '

It is useful to compare Pc with the stochastic-barrier energy at J =» 0, PB =» (M/2)3'4.

For the first zero of the Airy function, we find x=2.34 , PC/PB = 0.31 for M = 103 and

0.16 for M = 104, while for the fifth zero, x = 7.94, PC/PB = 0.55 for M - 103 and 0.28

for M =* 104. On the other hand, we recall that stable fixed points surrounded by adiabatic

islands exist, even in the J a 0 map, for P > PB/4. Thus, for STM parameters, as P is

increased, Airy function zeroes start to become barriers to diffusion at roughly the same energy

as that at which a significant portion of the phase space away from Airy-function zeroes

becomes non-stochastic.
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VIII. Comparison of Intrinsic and Collisional Diffusion

A. Diffusion into the Loss Cone

Using the results of Sec. VI, we calculate the rate of intrinsic diffusion into the loss cone

for a practical ECRH configuration. We use the mapping (80) but in the simpler form in which

the Airy functions are evaluated at zero argument and the associated area-preserving terms in

the phase equations are neglected. We can then approximately modify (69) and (79) to new

values (with tildas), which, for r0« rB give

- « 3 ,2/3-4/3
TL 8^r° '*

(99)

(100)

Using the same approximations as in Sec. VI, rB**-j=rPB but using (91) to calculate the bar

rier value we find

' 13/4

Pb
Taking an average step size

2

'*-

1/6

1
2l/2

K
2

and setting € —1, (58) and (101) give

^ J_ (M/2)1/8
'o" 23/2 21/6

(101)

(102)

For the simplified problem the maximum change AP —1, while for the ECRH mapping

(84) AP =*= pV6 . Since we find J*=Jq by using the relation that £x(/) at the loss cone edge

is equal to A£x (max), then, approximating the normalized £x by P and A£x by AP (valid

for small o-) we see that the condition £X=A£X, which determines J& can be written

P(J0) - pV6(J0)

which is satisfied for P—1, ue. ,J0 is the same as for the simplified mapping. Thus, if the slight

-36-



modification of the fraction of particles falling into the loss cone that arises from the

AP oc P1/rfi dependence is ignored, we obtain

?0 =2Wy0 - g)W.±-(4l_1) qo3)
OQi K\

where Rj, -» Bm/Bq and Rx —Bx/Bq.

Substituting (101) through (103) in (99) and (100) (setting RjR\=2 as an example) we

obtain

Returning to dimensional variables

£t=s 1(8^)1/3^/4^ (104)
3 <o

"• ~ ¥*&"«*%
where K, defined from the mapping equations (79) - (81), is given by

1/5

m

RXL2

{ P«> J
(105)

and

rb = ±-\ Tb(P)dP - 2rb(PB) (106)
rB 0

is an average bounce time, obtained, for a parabolic well, from (10). For STM parameters (see

Table 1) we obtain EL = 63eKand tl —1.2 x 10"4 sec.

The particle loss time from intrinsic diffusion is considerably shorter than an average colli

sion time in the absence of ECRH, which, for n *= 1012cm~3 and Te = \0keV yields rL =
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, -; 1
1.5 x 10"^ sec. If we take the collisional energy to be lost at the average energy £x = y

EB = SkeV, then the energy that would be lost from collisions in the absence of ECRH and

the actual energy lost due to intrinsic diffusion are approximately equal.

However, this collisional mechanism is not correct for either one or two frequency ECRH.

Instead, collisions, which slowly spread £||, combine with the more rapid £x diffusion to drive

particles into the loss cone. In this case the £x intrinsic diffusion is similar for one and two fre

quencies. We therefore compare the intrinsic diffusion of E{] found from the quasilinear two-

frequency result with that due to collisions in order to estimate the relative importance of the

two mechanisms. The normalized quasilinear result for constant step size is, from (55),

<A7>2 - y(-j7>2- (107)

With the heating kick proportional to P1/6 for ECRH, this becomes

<A/>2 - U^)2Pl/3 •
2 N

Reintroducing physical parameters

E „ yi^Lj (see
(O

with velocity jump V (see Eq. 105) and step time t6/2 the diffusion coefficient is then

D _ ML _ l(i)2pW(8sL W2 (108)
w 2rb 2 N (o

An average value is then obtained by integrating over the stochastic layer distribution function

/;

Pb

Ac? - 4-JduqAP) dP
Pb o

where PB is the location of the adiabatic barrier near 7—0. From (108) and taking

rb « P1/2, (for aparabolic well) we see that DllQ « P~1/6, and since f(P) ^ const, (assum

ing an equilibrium is approximately reached), we find

-38-



Pb
ISt

1.0 - -o-
alrt =, ^2Mj /^i/6 ^

B 0

where we have approximated the lower limit at P —0 for simplicity. Integrating, we obtain

The change in £j| in one mapping step due to collisions, for En « £x, is given by

<(Av„)2> - £x^- (110)

where tc is the electron scattering time. For small changes in vn we use A£|j—2v,|Avn to

obtain

Aic " E\\EJrc-

Holding £n constant and noting that tc oc £3/2, then for £M « Ev D\\c « P"1/2. For a

given £t| the average can then be written

A,c - ^J P~ln dP
?B 0

•J P-m

which yields

51|C = 2D]lc(PB). (Ill)

Evaluating (109) and (111) for STM parameters, we find

25,10 * !50(keV)2/sQC

2J„C =s 60(te*02/sec .

These results indicate that the two diffusion rates are of the same order of magnitude, but the

intrinsic diffusion is somewhat more rapid. In both cases the diffusion into a mirror loss cone

is due to the combination of the slow parallel diffusion combined with the rapid diffusion of £x

in the stochastic region. For single frequency ECRH this mechanism still occurs, but with only
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collisions driving the Eu diffusion.

B. Diffusion Through the Adiabatic Barrier

We now consider the rate of diffusion through the adiabatic barrier due to thin layer

Arnold diffusion and compare the result with the diffusion expected from collisions. Following

Sec. V B and Appendix C, we estimate the maximum rate of diffusion in £x by first calculating

A/ for each mapping step and then relating this value to A£x through the transformation equa

tions. To obtain the maximum rate of Arnold diffusion we maximize the Melnikov-Arnold

integral A2 in (CI9) by choosing a set of parameters such that the driving and Arnold diffusion

resonances are equally spaced on either side of the guiding resonance. Since we are interspers

ing r and s resonances, this places the three resonances ir radians apart in frequency space; i.e.,

the guiding resonance is midway between two resonances spaced 2 ir apart, and therefore the

Arnold diffusion driving frequency is Sa =« ir. Furthermore, near the adiabatic barrier we

expect the linearized frequency of the guiding resonance to have its maximum value a>^ «= 1

such that Q*a*oJ<!!>4t = v. The maximum value of the Melnikov-Arnold integral from (C21)

is

A2~%irQe 2 =0.6

From (C19) we find

A/ „ -F2p~lwj;1A2 sin xo

which squared and averaged over all xo yields

F2A2<(A7)2> - 1
jSw* J

for the diffusive change of the (otherwise) conserved actions J over a half-period of the guid

ing oscillation. Over a period of the mapping (AT)2 is reduced by the number of mapping

periods in a half-period of the guiding oscillation, namely ir/w^ to give
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<(A7)2> - ri.
2ir

<u, Ft Ay1*1

fSv*
(112)

Using the transformations (C6) from J back to the original (/,/, W) variables and the

two constraints that the diffusion lies in a resonance surface,

ro>0(7, J) + oix(/, J) + 2iMr - 0

and conserves the zero-order Hamiltonian,

H0(I, J) + 2ir W - 0 (113)

we can relate A/ to A/ or A/. In particular we wish to examine the neighborhood of the

"resonance turning;" i.e., near d7/dl -» 0 for the resonance (see Fig. 9); this turning lies just

above the adiabatic barrier and leads to the strongest diffusion in £x. Near the turning point,

A/ = 0 and, using equations (CI), (C7) and (45), we find

A/ « Isrtr - r(/is+l)]A7 . (114)

From the definition of the normalized perpendicular energy, EL =• u2 -» cK/—/), we obtain

for A7 = 0,

A£x - <rA7

so that (114) becomes

A£x - -(^+1) - n, - j8A7.

Substituting (115) in (112) we obtain

<A£2>
2ir

F2A2 \2

CO* J

which gives the characteristic time for Arnold diffusion,

El rb
TiA <(A£X)2> 2

(115)

(116a)

(116b)

where rb is the bounce period. The diffusion proceeds along all resonances, but at the fastest
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rate for those resonances that are relatively evenly interspersed.

As an example consider STM parameters with M = 2100. Evaluating £x on the reso

nance curve at the resonance turning we have

rl/2 . MiTT) (117)
&L 2wnr

We also calculate the barrier energy near J «• 0 to obtain

£A» - *u - l-5(^)3/4 =267

(The factor of 1.5 is a nominal increase in the barrier due to taking two resonances) For this

barrier energy all resonances above

2™*™7i72-"122

or ns>20, lie below the barrier in the stochastic sea. We find groups of resonances that satisfy

the interspersal condition near ns - 18 (nr - 21) ns - 11 (nr - 13), etc. However, from the

resonance diagram in Fig. 8 and the stochasticity limit in Fig. 11, it is clear that each succes

sively lower interspersal set is farther out in En and the value of £x where the resonance leaves

the stochastic sea is lower. We therefore estimate the Arnold diffusion rate from the nearest or

highest Wj resonance ns ™18. Using amaximum value of co^ = 1and substituting F2SSE1'

(see Eq. 80) into (116a) then for E± -» 143 from (117), we find the minimum number of map

ping periods to diffuse a characteristic energy interval £x to be £x/<A£f >—7xl0 . With

T^ssSxlO"8 sec for STM, we substitute into (116b) to obtain a minimum energy diffusion

time along a resonance, 7^=0.002 seconds.

This number can be compared with the characteristic energy diffusion time due to the

phase randomization which accompanies collisional pitch-angle scattering. Applying, for exam

ple, the treatments ofChirikov1 and Cohen and Rowlands we estimate adiffusion time (see

App. E and for more detail Ref. 12)
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xc
(£x/4£ll)jrl/2(p-1-^-)-2 rc (118)

where K is the Chirikov stochasticity parameter defined in (28) and tc is the angular scattering

collision time. Thus, just above the stochasticity boundary (K = 1) the energy diffusion time

is of the same order of magnitude as the pitch angle scattering time. For STM parameters, with

p — —, evaluating £x and E» at the resonance turning with n, «• 21, as in the Arnold

diffusion case, we find EJE{] » 6. When substituted into (118) this gives

_ 2

with tc= .03 sec (for E == lOkeV and /!—1012cm~3). This time is somewhat longer than the

Tj_4 calculated from the Arnold diffusion. However, we have found the maximum rate of

Arnold diffusion along a single resonance. Over most of the resonance the diffusion will be

slower, and is generally much slower. In addition, the total phase space volume near the barrier

is much larger than the phase space volume of the resonance layers in which we expect the

Arnold diffusion to be large. Thus, for this particular example we would not expect Arnold

diffusion to play a major role in enhancing the collisional heating beyond the adiabatic barrier.

For other devices, for which the adiabatic energy is higher and/or the particle density is lower,

so that the collisional diffusion times are significantly longer, Arnold diffusion may play a

significant role in plasma heating.

IX. Conclusions

A model for two-frequency electron cyclotron resonance heating has been studied, using a

mapping approximation. It is shown that, owing to the spatial separation of the resonance

zones, the two frequency mapping is four dimensional, rather than two dimensional as with a

single frequency. Two important consequences of using two frequencies can, however, be

obtained from a two-dimensional approximation to the four-dimensional map These are (1) an

increase in the range of energy over which heating can occur, due to the raising of the adiabatic
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barrier limiting the heating from below; and (2) optimization of this increase by uniformly

interspersing the resonances corresponding to the two applied frequencies.

In addition to these processes, there are a number of other effects that arise solely

because of the higher dimensionality of the mapping. These effects are associated with Arnold

diffusion, in which diffusion occurs along as well as across overlapping resonance layers. In the

main heating region this leads to diffusion in parallel energy as well as the lowest order

diffusion in perpendicular energy. Arnold diffusion also allows penetration into the region of

phase space in which the motion is primarily regular by diffusion along narrow stochastic layers

in the neighborhood of the resonances. For real ECRH devices, the first effect leads to

enhanced diffusion into the loss cone, while the second results in diffusion to higher energies

than predicted from the two dimensional model.

In a real device, collisional effects also cause particles to diffuse into the loss cone and to

increase the energy of some particles beyond the adiabatic barrier. For the STM device, in

which two frequency heating has been employed, it is found that intrinsic diffusion of the paral

lel energy can significantly enhance diffusion into the loss cone. The increase in perpendicular

energy due to Arnold diffusion is at most comparable to that produced by collisional effects.

However, for an appropriate choice of parameters (high barrier energy, high electric fields, and

low plasma density) the increase in energy from Arnold diffusion can exceed that due to colli

sions.

The inclusion of the real electron cyclotron resonance heating dynamics gives rise to an

Airy function coefficient for the kick in perpendicular energy when traversing a resonance.

Zeros of the Airy function arise from destructive interference of the heating for some particles

traversing the resonance twice. These zeros act as a barrier to heating for a single frequency.

Due to the higher dimensionality of the phase space, the Airy function zeros cease to be a bar

rier for two frequency heating. However, even with a single frequency the size of an individual

energy kick may be sufficient to jump over an Airy function zero over most of the stochastic

phase space.
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In addition to the results obtained for experiments, the heating model is useful for study

ing the dynamics of four-dimensional maps. Arnold diffusion has been studied in simpler prob

lems, but even the simplified dynamics developed in Sec. II allows for a richer set of dynamical

processes. The three-resonance theory of Arnold diffusion has also been compared with the

numerical values of diffusion obtained from the mapping, shedding light on the applicability of

the theory. Some interesting results have been the following. We have shown numerically that

higher order fixed points exist on resonances of a single frequency, in addition to the sparse set

of lowest order fixed points that exist at the intersections of the two sets of resonance curves.

The stability of the fixed points has been analyzed by applying a recently

developed theory for four-dimensional symplectic matrices, and the results

confirmed numerically. The widths of the resonances are calculated from

an averaged Hamilitonian in the neighborhood of a resonance and found to

agree with numerical calculations. Reconnection of the islands existing

on two branches of a single resonance is found to take place near a turn

ing point of the resonance in action space. It is shown that the recon

nection can be predicted from an analytic model.

The adiabatic barrier to heating from below is found by numerically iterating the mapping

and shown to correspond, except in regions near resonance turning points, where reconnection

occurs, to the "two-thirds rule" for resonance overlap. Diffusion in the thick stochastic layer is

shown to be quasi-linear in both actions in regions for which the phase associated with one of

the actions is randomized in each mapping period. This result is consistent with the analytic

diffusion calculation. The computed rate of Arnold diffusion along a stochastic resonance layer

just above the main stochastic sea compares reasonably well with the three resonance theory.

We gratefully acknowledge the assistance of S. M. Hohs in performing the numerical cal

culations. This research was supported by the Department of Energy Contract DE-ATOE-

76ET53059 and the Office of Naval Research Contract NOOO14-79-C-0674.
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Appendix A. Details of Linear Stability Calculation

The linearization of the mapping (24) is

/BI'
BI

Br

BJ

BI' BI'

Bx

I BJ'
BI

B<t>'

BJ'

BJ

ML

BJ'

B<b'

BJ'

Bx

ML

\
with characteristic polynomial

bi bj a* ex

ML ML ML ML
BI BJ B<f> Bx

F(A) - det(L - Al) - 0.

(Al)

(A2)

Since [/',#'] —U\x'] —1, the mapping (24) and therefore the matrix L are symplectic. By

the symplectic eigenvalue theorem, if A is an eigenvalue, then 1/A is also. Further, by the

reality of L we know that complex eigenvalues occur in conjugate pairs. Thus, there are just

three possible cases:

Case 1: four real roots

(Arl, 1/Arl, Ar2, 1/Ar2)

This case is always unstable unless Arl —Ar2 —1 (neutral stability)

Case 2: two real, two complex roots

(Ac,Ac\Ar,l/Ar)

SinceA;-l/Ac, |AC|2- 1.

Case 3: four complex roots

(Aei, Aci, AC2, Ac2)

Here there are two sub-cases:
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(a) A,,*! - -—, Ae2 - -t—.
Acl Ac2

Thus, |Acl|2 —|Ae2|2 •• 1 and the motion is stable.

(b) Ae2 - -—, Ac2 - —r
Acl Acl

Thus, |Ac112;* 1, |Ae212i*1 and the motion is unstable.

Of course, in all cases Ax A2 A3 A4 — 1, since F(0) •• 1.

14
The stability limits of the general 4x4 symplectic matrix have been derived by Mackay

whose results may be summarized briefly as follows. Owing to the symplectic property, the

polynomial (A2) has the reflexive form

A4 - PA3 + QA2 - PA + 1 - 0 (A3)

where P and Q have the well-known equivalents,

P - 7>L (A4)

e-i-[(rrL)2-rr(L2)l.

Defining p, —A, + A"1, it easily follows that P —pj + p2 and Q —p\p2 + 2, from

which Mackay obtains the universal stability diagram illustrated in Fig. 17. The various transi

tions among eigenvalue configurations are indicated by the inserts showing the local complex

A-plane.

1. A complex conjugate pair of roots moves to the positive real axis when

Q < 2P - 2. (A5)

2. A pair moves to the negative real axis when

Q < -2P - 2. (A6)

3. A non-conjugate pair merges and moves off the unit circle (Krein collision) when

Q> 2+-i-P2. (A7)

4. Since the straight lines (A5) and (A6) are tangent to the parabola (A7) at P — ±4, we also
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require

\P\ < 4

for stability.

Note that when P — ±4,0 — 6, all four roots have merged.

Working out the elements of L, we find, after some lengthy algebra,

^ l
o

cr2U-£)

L *2B

where

o

l

<r2B

s2(a+kp)

A M „ 3o-MT
ir 4lr

5/3 fi/k
1+a(A-B) +p(kA-B) <rj-(kA-B)

-<r2(A+B) aB +p(B-<rA) 1+o-f(B-<rA)
k

a - -ttCOSCs^)
iV

P- ^-cos(r<Hx)

(A8)

(A9)

(A10)

(All)

A typical root locus is shown in Kg. 18 for o- — 1/4, M — 50, (m,n) — (0,1). Since J

- 0, the angular fixed point is ty,x) - (45° , 135° ). For € - A-JA\ - 0 all four eigen

values lie on the unit circle, with one degenerate pair at A — 1. As 6 is increased, the merged

pair at A — 1 split and move along the unit circle, colliding with the other pair when 6 —4/9.

After this "Krein collision," each collidee moves off the unit circle, as shown. At € — 1, pairs

of roots again collide and move onto the real axis ever after. Calculating root loci for a number

of m-values, we find that the € - M plane is subdivided as shown in Fig. 6. For M<17.0,

there are no stable fixed points. For 17j^iW^44.5, there is a stability window between the

upper curve and the line €X —4/9. For Jl/;>44.5, the (<£,x) — (45° , 135° ) fixed point is

stable for 0 < € < 4/9. It is remarkable that the critical value 6 — 4/9 is independent of M,

and even more remarkable that the second value, e — 1, is independent of both M and cr!

The simplicity of these initial numerical incursions into what seemed impassable mathematical

territory led us to attempt an analytic solution, which was greatly facilitated by the theory of
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Mackay. We are indebted to him for making his preliminary results available to us.

After successfully applying their theory to the J — 0 case, we found a second region of

stability for €^1 and (<£,x) - (0,180°) as shown in Fig. 6. There are apparently no stable

4
fixed points at all for -J < € < 1. For /^0, for which we have no theoretical results, atypi

cal € —M plot (Fig. 7) shows a stability window for € < 1 and (<£,x) • (0,180° ) with no

stable fixed points for 6 > 1.

Analytic Results for J - 0 Fixed Points.

Setting B - 0 in L we find,

P" 4+-jf^\ +o-2€(k+a-)] (A12)

Q- 6+̂ -[o-! +o-2€(X+(r)] - o-1o-2<r2€(^)2,

where cri —cos($0) and cr2 - cos(r0+x) are ±1 according to Eqs. (34) and (35).

First consider condition (A5), which for stability becomes

<T2€A2
""°,i°"2

N2
> 0. (A13)

This excludes the cases a-x —or2, so that the combinations (<£,x) • (0,0) and (o-ir,—o-ir) are

never stable. Thus, we may rewrite (A12) as

P" 4+^-[l-€(X+o-)] (A14)
N

Q-6+i^[l-e(x+0.)] +<rh(jj)\

Next we consider the limit Q - 2 + P2/4. Substituting (A14) in this equation yields a

quadratic in €,

Ocr+1)V - [(2o~+l)2 + l]c + 1 - 0, (A15)

whose solutions are
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«i - (20-+1)"2 (A16)

independent of M and valid for both <rxo'2 ——1 cases. For o* —1/4, this gives €j —4/9, as

observed in Fig. 6.

So far we have proven that the motion is unstable for €j < € < €2, with possible stabil

ity outside these limits. To explore the outer limits, consider the third limit, Q + 2 — —2P,

which gives a quadratic in A/N,

<r2<r(4)2 +4o-1[l-€(X+<r)]4 +16-0, (A17)
N N

with solution

i cr2€(-£) - -o^l-cU+o-)] ±V[l-€(X+o-)]2-4<r2€. (A18)

For fixed cr, this equation yields a stability limit M - M(e) via

13/2.

m-3a
2ir

(A19)

Together with the critical values (A16), the solutions (A18) map the PQ plane into the €-M

plane depicted in Fig. 6.

For o-j - -1, i.e., (<£,x) - (45° , 135° ), Eq. (A18) has two real branches for

6 < €j —(o-+X)~2, as shown in Fig. 6 for cr —1/4. Setting the dscriminant equal to zero,

we recover the quadratic (A15), showing that at *x there is a critical value A —4Af(o-+X)/cr,

or

2_ (njr)H<r+k)
crV(X+cr)4+X2

For a «- — and n -» 1 this yields Mx — 17.00, as indicated in Fig. 6, corresponding to point b

in Fig. 17.
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Letting € —* 0 in (A17) we find A -* 4 on the upper branch, giving a second critical

value

M2 - (ir/«cr)3/2. (A21)

For o" •• -7- and n — 1, this gives M2 «• 44.5, as observed in Fig. 6. (P — 0, Q — -2 in Fig.
4

17).

When M < M\ there are no stable period-one fixed points for any €. This corresponds

to a locus in the PQ plane initially below the line Q — 2 - 2P and crossing this line to the left

of P - -4, so that it never enters the stable arrowhead. For M\< M < M2 the motion is

unstable for € — 0 but has a stable window, going unstable again at ex. This corresponds to a

PQ locus crossing Q—2—2P to the right of P - -4. (Root locus of Fig. 18) For M > M2 the

motion is stable for all c < ej, the P-Q locus lying initially within the stable region.

For a-1 —+1(0 —0,x — 180° ) the stability picture is quite different. Since P > 4 for

e « 1, stable motion is possible only when € exceeds a critical value, evidently

€j —(X+er)""2, as we know from (16) that the motion is unstable for 6j < € < 1. In the P-

Q plane, the locus for constant M begins in the right wedge region for e — 0, crosses the para

bola at €j and again at € — 1, entering the stable region if P > —4 at € — 1. From (14)

this requires A > 4AT/cr, or M > M3, where

•Mi -?£&*•
As e is increased further, the motion again goes unstable upon crossing the line Q + 2-

-2P. Solving (A17) with a-x - +1 gives

\<rh(j;) - €(X+o-) - l±([€(X+o-)-l]2-4o-2e)1/2, (A23)

with M(c) given by (A19). For fixed M, the critical value of € is of course directly given by

(A17). Equation (A23) is useful for calculating the limiting values of M as €—<». The results

are A+—*°°, for which M—*0, and ^4_—4X/(X+o-), which yields
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Ml - A±2L ns. (A24)X+o- ntr

\ i
X

The two branches of (A23) are plotted in Fig. 6 for o* -» —-, for which the limiting values are

M$ — 17.60 and M4 —48.80, in complete agreement with a numerical eigenvalue calculation.

The various transitions in the eigenvalue configurations are indicated on the figure.

In conclusion, we have been able to give a surprisingly complete account of linear stability

for the J — 0 fixed points. In addition, we have obtained a detailed description of the

configuration of eigenvalues for varying M, cr and €, which may have a bearing on the rather

slow divergence rates observed in many cases. Typically, as the amplitude ratio 6 is increased,

stable motion occurs for (<£,x) ™ (o"*7"* (1—oOir) at low 6, followed by an unstable hiatus

with no stable fixed points. A second stable region exists for (<£,*) ~ (0,?r) for € > 1, as the

r-fold symmetry dominates.

What happens for the 7^0 fixed points? In this case many more terms survive in the

expressions for Pand Q, especially in 7>(L2), making an analytic solution much more difficult.

A numerical search suggests that, in contrast to the J - 0 cases, the 0 — 0,x — 180° fixed

point is always stable for € < 1, as shown in Fig. 7 for (m,n) — (1,1). So far we have found

no stable fixed points for € > 1.
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Appendix B. Resonance Width Computation

The principal resonances are

AV - -2™s (BI)

XA¥ + Ax - -2trnr (B2)

where

and

AV - JL(2P-3<tJ) (B3)
2«3

A* - -i^M (B4)
2w3

u2 - P-o-7 . (B5)

Equations (B1-B2) are nonlinear functions of P and J,which may be solved using u as a param

eter. Typical resonance curves for various ns and nr are illustrated in Fig. 8. Our task here is

to calculate the libration amplitude about these resonances.

B.l S-Fold Resonances

Near an s-fold resonance (BI) the motion is described by the averaged Hamiltonian

H- H0(P,J) + 47cos^ +2irm*s) (B6)
N

where m is integer time and

HQ(PJ)--^(2P-<rJ). (B7)

Using the generating function

F(PyVJiX) - ?<& + 2irmn5) + JX (B8)
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Eq. (B6) becomes

H- H0(P,J) +2<trnsP +jj cos¥, (B9)

where ¥ - ¥ + 2irmnt

The customary method for calculating the resonance width is to Taylor expand about Pr

to obtain a pendulum Hamiltonian. This gives

l

max ^NG-

where

A/> -(4^)2 ®10)

G_ Hk - J*(2P - 5(r/) . (BID
BJ2 4m5

Since P—"5<rJ/2 as /—'/max* we see mat A^max diverges there. The physical reason for the

failure of the quadratic approximation to H(P,J) is that the resonances corresponding to the

upper and lower branches of a resonance curve interact strongly nearJmax. Adding cubic terms

to the expansion does not help because the two expansions do not match up in the reconnec

tion region.

To correctly describe this rather complex interaction we write the two-dimensional

reduced map corresponding to (B9) in the form

P' - P+4r cos¥ (B12)
N

where f(P)-BHo/BP and we have dropped the tilde on ¥. The fixed points of (B12) are

just the resonances (BI), which may be written

f(P) + 2irns - 0. (B13)

Using (B3) and (B5) this becomes a cubic in w;
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u3 - uQu2 + jUqo-J - 0 (B14)

where u0 —M/2irns is the velocity when / —0. From (B14) is follows that / attains its

maximum value a J* —8wq/27 when u* —2«o/3, and that the maxima lie along the line

P - 5<r//2 (Fig. 19).

The fact that f'(P) —0 between the two branches of the resonance curve has profound

effects on the form and stability properties of the corresponding island chains of the mapping

(B12). From the theory of Howard and Hohs such mappings have the following general

properties:

1 Corresponding to each of the roots of /Cr) + 2irns •» 0 there exists an island chain at

P /—1 2 k

2 Let / —/(P;a), where a is a set of parameters. Then if /' « Bf/BP vanishes for

some a*, two island chains merge at P* given by /(P*,a*) ——2irns.

3 Prior to merging, the (period-one) island centers are shifted in phase by 180 degrees.

Reconnection occurs at ar given by

P2&)

f l/(r\3) +2irns]dP - ^ . (B15)
PiO) ^

Figure 20 depicts the Hamiltonian level curves before and after reconnection for the map

ping (B12). For the lower separatrix, with x-point at (PXiir) , Eq. (B9) gives

^(2Px-<rJ) - ^-(2P-(tJ) +2*r/is(P-^) +^r cos2-?- - 0. (B16)
ux u 5 l N 2 v

To obtain the amplitude, we set ¥ — 0 before reconnection and ¥ =• ir afterwards. Note that

this gives the upper island width after reconnection. Defining 8 =- cos2¥/2 and using (B5) to

eliminate P and (B14) to eliminate J gives

"3 ~ 2U°"2 +[W +«.(4«o-3Ul)lU - 2u?(u0-Ul) - 0, (B17)

This equation is easily solved numerically with 5=»1.
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After reconnection, with 8—0, (B17) factors into

(u-ujHu-uJ - 0 (B18)

where m3 - 2(m0~«i). The two upper half-widths are then P3-P2 and P2-P\> with P given

by (B5). The width of the upper island chain before reconnection is found by setting 8 ——1

in (B17). Rgure 9 shows a set of resonance curves and widths for Af«-100,o--»l/4 and e-»l.

Note that the widths go to zero when J"^Jmax* when the loops in Fig. 20 become cusps.

B.2 R-Fold Resonances

The averaged Hamiltonian near an r-fold resonance is

H - Hq(PJ) + ± cos(X¥+x+2irnrm). (B19)

Using the generating function

P(P,J0¥,x) - P(X¥+x+2ir*rm) + J X (B20)

gives P^kP and J-P+J, so that

H - H0(kP9 P+J) + 27rnrP + -f? «>s¥. (B21)
N

Thus

J-J-P/k (B22)

is a constant of the motion. That is, libration occurs along a line of slope X in the P—J plane.

Using (B22) in (B5) gives u2 —P—a-J —P—o-J, so that the resonance condition (B2)

becomes

u3- uQru2 + j^u0rJ - 0 (B23)

where «0r ~ kM/2irnr. In the new coordinates this becomes

u3 - u0u2 + (t7t)"o°"-? - 0 • (B24)

Equations (B23) and (B24) may be used to generate r-fold resonance curves in the P—J plane
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and P—J plane, respectively. It is easily seen that the maxima occur in the P—J plane when

«*—(2/3) u0r, along the line

P* - (l+^-)o-y* . (B25)

The new Hamiltonian (B21) may be written

/jr,_M(x+1)p +AM^ +i£2i +^Cos^-0 . (B26)
u uQr u N

Again taking P—Px> and ¥—0 for the lower separatrix gives

•^[(X+DPi-o-fl- ^[(X+1)P - crJ] +±M.(u*-u{) +^rCOS2?^ - 0 . (B27)
tt\ u UQr N 2

After some manipulation, this becomes

u3 - 2u0u2 +[k^^y +«i(4«0-3t/1)]« - 2u2 (Qq-uO -0 (B28)

which is exactly (B17), with uQ replaced by u0 and M by —(X+l)Af. After reconnection,

with 8—0, (B28) factors into (B18) with m3—2(uq—ux). The rest of the calculation proceeds as

for the s-fold resonances. Finally, we transform back to (P,J) to obtain the set of r-fold

curves shown in Fig. 10.
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Appendix C. Calculation of Arnold Diffusion

Here we determine the thin layer Arnold diffusion rate in the guiding resonance (59)

12using the three resonance, stochastic pump model . Including the two guiding resonances

(60) and (61), we have the three resonance Hamiltonian

H - H0(I,J) + P0 cos(r<£ + x + 2irnrn) + Fxcos(s(f) + 2ir(ns+l)n) + F2 cos(s<£ + 2irn5n)

where n is the (integer) time and

#0--i£L(2W)
u

/•0_6(1+62X2)-l/2 (C1)

Fl - f2 . (1+€2X2)-1/2

are respectively the amplitudes of the guiding resonance, the stochastic pump driving resonance

and the Arnold diffusion driving resonance. We introduce the new action W ——H/2tr and

its canonical angle 9 —2trn and work in an extended phase space. The new Hamiltonian is

He - H0(ItJ) + 2tt W+ P0 cos(r0+x+*r0) (C2)

+ F1cos(s(ff+ns9^B) + P2cos(s0+«50).

To expose the transformed action / that is conserved in the absence of Arnold diffusion* we

transform (C2) using the generating function

S - I(r<f>+x+nr9) + JX + W(fi9-X)> (C3)

where

j3-X(/25+l)-*r. (C4)

This yields the new Hamiltonian

H-HQ + F0 cos^ + Fi coslX-KJ+jS)] (C5)

+ P2cos[X-10+(X-1-)3-1)0 - rXxi

where H0 - H0(rlJ-W+J) + 2irnr7 +2<irpW y
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7-r7

/-/- w + J

W-nJ + pW

(C6)

In the absence of the Arnold diffusion driving resonance (F2 —0),/f is independent of x

and therefore J is conserved. Inverting (C6),

/-/ +
sW-(ns+l)I
r(n5+\)—snr

const. (CD

The remaining motion is approximately that of a periodically driven pendulum. To see this we

expand H about the resonance values of the actions Ir ,Jr , WR, satisfying

o>*-
BH.

BI
-0

to obtain

H0 =H0UR,JR,WR) +|g(A7)2

where

\d2Hn)

la/2 J

is the nonlinearity parameter. The term linear in A/ — / — IR vanishes by virtue of (C8).

Ignoring the constant term in (C9), we have from (C5)

AH - jG(A7)2 +FQ costf +Fx cos[X"1 ($+9)].

Since AH is independent of /, 9 — Z>9n where

- BH0
(Oa — —=r

9 BW

(C8)

(C9)

(CIO)

(Cll)

Hamiltonian (CIO) is that of a periodically perturbed pendulum. The linearized frequency of

libration (for small oscillations of the pendulum) is
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«* - (F0G)1/2. (C12)

Near the separatrix of the pendulum, the driving term Fx produces the usual stochastic motion

within a thin layer surrounding the separatrix. The motion within this stochastic layer is ran

domized on the time scale T6 of the meanhalf-period for the perturbed separatrix motion [12]

JV-Si"lln|-22£| (C13)
wi

where wx is the relative energy at the stochastic barrier defining the edge of the layer, and e is

the natural base.

To determine the Arnold diffusion rate, we re-introduce the F2 driving term and calculate

the change in / for an initial condition in the separatrix layer. From (C5), J — —BH/Bx

and

00

A7 - -F2P~1f dn sinlX^Jte^w) +Jadn +xol <C14)
—oo

where

5(?) - 4tan"1(^) -ir (C15)

is the phase variation of the unperturbed separatrix motion of the pendulum,

Zid - (X-1-^-1)^ - prl»x (C16)

is the effective driving frequency, with

*>*
'bh0
I BJ Ir

and xo is an initial phase. Changing variables to £ —(o$n and expanding the sine function,

only its symmetric part contributes to the integral and we find

oo

A7 - -Ftf-1**;1 sinxo/ *i coslk~l^)-Qe (C18)
—oo

where Q ——S^/w^ > 0 is the ratio of the effective driving frequency to the libration fre-
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quency of the pendulum. The integral in (CI8) is the Melnikov-Arnold integral Am(Q) with

m - 2X"1;

A7 - -Ftf-1*;1 sinxo Am (Q). (C19)

Squaring A/, averaging over Xo ^d dividing by 7^, we obtain the Arnold diffusion coefficient

DA - ^ffi *F22P'2^2A2(Q). (C20)
27^ 4f0

For large Q, Am has the asymptotic form (see Ref. 12)

Am ~ 4ir(2Q)m"1 e-*Q/2/(m-l)\ (C21)

For X «s 1, we require ^2» which has the exact form

A2(Q) - ^rQe^VsinhdrQ). (C22)
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Appendix D. Loss Cone Boundary Value Problem

As shown in Fig. 14 we seek the solution to the equation

1 3 0d/) , 1 b\f :j) 8(r-rf)6(9-g,)
r Br Br B92

in the wedge r<rB—90^9^ir/2y where from (64),

tan0o - €.

The boundary conditions are

M - oat 9- £-,
B9 2'

B£
Br

0 at r —rB,

/ - 0 at 9 - 90.

The solution to (Dl) which satisfies the boundary conditions is

x*«

where

/ - X^^)"" sina„(0+0o), r<d

r rB d sina„(0+0o)* /•><*

«o

a„ -a0«»

1 + —0o
IT

and the sums are over the odd integers n — 1, 3, Since / is continuous at r

from (D6) that
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(D2)

(D3)

(D4)

(D5)

(D6)

(D7)

d, we find



An " Bn 1+ (J-)2*'
^b

(D8)

The discontinuity in the gradient of / is due to the source on the right hand side of (Dl).

Multiplying (Dl) bysin[afc(0+0o)] and integrating over the range —0o<0<ir/2, we obtain

2 sin[aJt(01+0o)l

Integrating this over r from d— to </+, we obtain

Bk - j sin[aJt(01+0o)]. (D9)

Equations (D6) - (D9) give the unique solution to (Dl). We are interested in electron cyclo

tron resonance heating where the source particles are injected at low energies d«rB. For

convenience we also choose 0} —ir/2—; the final results are not sensitive to the choice of

injection angle.

For these choices,

/ - 42 (-l)(k-l)/2U^-)*k sin[a*(0+0o)] (D10)
it k r>

where the sum is over k odd and

r< —min(r,</),

r> —max(r,rf).

To obtain the mean loss rate uL and the mean energy EL of a lost particle, we must find

the particle flux SL, the energy flux PL and the total number of particles NT. The differential

flux at the loss cone edge is

^-A>7|£l*--*0. (DID

We write the total particle flux SL as
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Sl=J FL—dr +J FLdr, (D12)

ro

where we have assumed r0 —xqSQc9q < rB ^d inserted the factor r/r$ in view of the discus

sion following (6.7). For r0 > rB the second term in (D12) is omitted. The integrals in

(D12) are elementary. Similarly, the power flux P^ is

'0 rB

PL - Af rFL—dr +AXrFLdr (D13)

'o

where we have written the total energy per particle at the loss cone edge as E — rA, where

from (15)

A-A^—cos0o.

Finally, the total number of particles in the wedge is given by

NT - J d9 J rdrf.
-o0 o

For a© < 1, the dominant (k —1) terms for SL, Pi and N are

SL l ./*.„„ 8_ 1 ( d jap j °K
4Z>oa0 l-a0 r0 a0 'o rB

1 r0(-^)ao +
4DoaoA 2-a0 r0 ckq"1

rQ(^)a° - r^(-S-)«0

'O ^

#a0 Lrj^)00
4 2-a0 rB

Here 8j^ —1 for rQ<rB and 8^ —0 for r0<rB. Corrections of order d/rQ and d/rB have

been omitted.
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Appendix £. Neoclassical Energy Diffusion

We outline here the derivation of energy diffusion due to phase randomization which

accompanies pitch-angle scattering. For single-frequency ( cox ) heating in the presence of

pitch-angle scattering, the mapping can be written as

E[ -£x + .4sin¥-£ (Ela)

£,', - £„ + £ (Elb)

¥'-¥+ £(£; ,£,',) (Elc)

where £ is the (random) change in En (or —EJ due to collisions in a mapping iteration time

t6/2, i.e., <£2> »= <(AEJ2> —m2vf <(Avx)2>. In terms of the angular scattering we

have <f2> —m2v2v2 <(A0)2> =» 2E±E\\ Tb/rc, where 0 is the pitch angle and re is the

angular scattering time.

Introducing the total energy £ as a new variable, and linearizing (Elc) about

£ — £o»£|i ™£no sives the mapping

£' - £ + A sin¥ (E2)

r - * +b +^(e'-eq) +
0£>±

where £xo=£q —£|)0.

BB BB

BE\\ o 9£io
(£ii —£j|0)

Defining p- B0 +(BB/BEJ(E-EQ), q- {-£§—-^-)(£,|-£|,o), we obtain the
17 18

system studied by Chirikov* and Cohen and Rowlands ,

p' - p + K sin¥ (E3)

V'~V+p' + q'

d'-q+Z
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with K=A BB/BE±> and £ - [(BB/BE«) - (BB/BE±)](,. The r.m.s. value of £ is o~1/2,

where

\2

= 2

BB

d£l0

dB BB

6£±o

BB

BE\\0

2

<£2>

d£,no
E±oE\\oTb/Tc •

(E4)

Assuming weak collisionality (cr<l), then just above the adiabatic barrier (i.e., where AT=1),

the parameter S^K3^2a,"1>lt indicating banana-regime transport * . Thus the diffusion

coefficient for p (with time in units of the mapping time) is » Dp = -y/Kcr. Translating

back to the physical variable £ and actual time, the corresponding energy diffusion coefficient is

DF**4JK BB

BE±o

-2
BB BB

d£xo d£no

~ 4Vr£x0£„0(p-1 - V2)2/rc

where the second form is obtained using Eq. (9) and the approximation £no/£xo«l. In this

same approximation, the energy diffusion is essentially E± diffusion.
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Table 1

Parameters for Two Experiments

STM: L= 20 cm, £ = 10 V/cm, f = 10 GHz, Rx = 2

MFTFB: L = 100 cm, £ = 100 V/cm, f - 28 GHz, Rx = 2

M A(o/(o o-

STM 2200 .02 1/12
MFTF-B 5000 .016 1/16

^ E^(keV)
190 9.4
355 650



FIGURE CAPTIONS

Fig. 1 Schematic of trapped electron orbit in a parabolic well, showing resonance zones

corresponding to two heating frequencies.

Fig. 2 Fixed points in scaled action space.

Fig. 3 Projection of four-dimensional phase space onto /—<6 plane for M — 500, o* — 0.25

and c — 0.05, produced by scanning along the 0—45 ° line. True fixed points are indi

cated for n •- 1, 2 and 3; the s-fold and r-fold fixed points exist strictly speaking in the

limits € —* 0 and », respectively.

Fig. 4 I—<f> projection for the same conditions as in Fig. 3 except that e—1. The n — 1 fixed

point has destabilized, in accord with the predictions of Section m.

Fig. 5 Stability of fixed points in <f>—x plane for large M and small € with (a) J — 0; (b) J ?*

0.

Fig. 6 Calculated stability boundaries in € — M plane for J — 0. The eigenvalue

configurations are shown in the inserts.

Fig. 7 Numerically obtained stability boundaries 'me — M plane for J ^ 0.

Fig. 8 Resonance curves in action space for M — 500 and o- — 0.25. Intersections of nr and

ns resonances correspond to the fixed points of Fig. 2.

Fig. 9 Calculated resonance widths for the ns resonances ( €—0) for M — 500 and cr —

0.25.

Fig. 10 Calculated resonance widths for the nr resonances ( €—*<» ) for M «• 500 and o- —

0.25.

Fig. 11 Adiabatic barrier in action space determined from a number of orbits initialized near

the I — J line in the stochastic sea. Parameters are as in Figs. 9 and 10 except that €

— 1.0. The theoretical resonance widths of Figs. 9 and 10 are superposed.



Fig. 12 Computed thick-layer diffusion coefficients compared with theoretical quasilinear

values for M - 20000, cr - 0.25, € - 0.8 and initial values for /0 - 10, J0 - 20.

Fig. 13 Computed thin-layer diffusion coefficient for M - 240, cr - 0.25, € - 3.0.

Fig. 14 Sketch showing boundary conditions used in axial loss model.

Fig. 15 Enlargement of computed adiabatic barrier for same conditions as Fig. 11, used in

finding the shape of the stochastic region for the axial loss calculation.

Fig. 16 Average loss energy JL and loss time rL from axial loss model (curves) compared

with numerical values (circles).

Fig. 17 Stability diagram for general fourth order symplectic matrix (after MacKay).

Corresponding eigenvalue configurations are shown as inserts. Only the inner arrow

head is stable.

Fig. 18 Root locus for m — 0, n — 1, fixed point, with M •• 50, o* — 0.25, and

<f> —tt/4,x ™3ir/4. A Krein collision occurs when € —4/9.

Fig. 19 Geometry of s-fold resonance curve. The extremum occurs on the line P — 5 cr J/2

at the velocity u* -• 2uq/3.

Fig. 20 Integrable representation of Hamiltonian level curves for motion near an extremum of

the resonance curve of Fig. 19. Reconnection occurs when Hx — H2.
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