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Abstract

Jacobi methods for symmetric matrices have prompted the search for

generalizations to reduce any complex square matrix to upper triangular

form using unitary similarity transformations. All attempts have been

unsuccessful. It is not the case that all previous investigators have

failed to find the right algorithm. It is shown here that there are

intrinsic limitations on Jacobi-type procedures.



ACKNOWLEDGMENTS

Iam most grateful to my thesis adviser, Professor B.N. Parlett,

for his patient guidance. Iwish to thank my husband, Yung, for his

understanding and encouragement.

This dissertation is dedicated to my parents.



TABLE OF CONTENTS

Page

Chapter I INTRODUCTION ... 1

Chapter II DEFINITION OF JACOBI METHODS 3

II. 1 Introductory Remarks . 3

11.2 Criteria of Jacobi Methods 3

11.3 QR Without Shift as a Jacobi Procedure 6

11.3.1 Formal Definition 6

11.3.2 Hessenberg Form and
the Uniqueness Theorem . . 7

11.3.3 The Basic QR Algorithm as a Jacobi Method 8

Chapter III A SURVEY OF THE JACOBI-TYPE METHODS 12

111.1 Introductory Remarks . . 12

111.2 Hermitian Matrices 13

111.2.1 The Classical Jacobi Method 14

111.2.2 The Cyclic Jacobi Method 15

111.2.3 The Cyclic Jacobi Method With Threshold 15

111.3 Normal Matrices 16

111.3.1 Goldstine-Horwitz Method ....... 17

111.3.2 A Simpler Procedure 17

111.4 Extensions to Arbitrary Matrices 18

111.4.1 Eberlein's Method 19

111.4.2 Greenstadt's Method 20

111.4.3 Lotkin's Method 22

111.5 Summary 23

Chapter IV HUANG'S ALGORITHM 24

IV, 1 Introductory Remark 24

IV.2 Description of the Algorithm , 24

IV.2.1 The n = 3 Case 25

IV.2.2 The n x n Case 28

11



/

Paje

31
IV.3 Discussion

IV.3.1 Angles of Rotation to
Achieve Annihilation ^'

IV.3.2 A Simplification of the Algorithm ... 33
IV.3.3 The Elimination of the Concatenation

of Infinite Processes in the Case n-3 . 34

IV.3.4 Non-convergence 37
38

APPENDIX

45
REFERENCES

ill



CHAPTER I

Introduction

In 1846 Jacobi (16), in proving that the eigenvalues of a symme

tric matrix are real, gave aconstructive procedure for finding them.

The method was little appreciated until its rediscovery in 1949 by

Goldstine, von Neumann and Hurray. Since then an interesting litera

ture has been developed for the modification and generalization of

Jacobi's method. For the symmetric and Hermitian case, modifications

for various purposes have been developed and are quite successful.
The generalizations to arbitrary matrices are not so satisfactory.

The elegance of Jacobi processes lies in their simplicity. The chal
lenge is to produce aJacobi type algorithm which achieves rapid con
vergence without sacrificing too much simplicity. The thrust of this

thesis is that no such variation can be found.

Greenstadt (11), Lotkin (19), and Huang (15) have produced Jacobi

type procedures for arbitrary matrices. Their limitations can be

illustrated by the following example:

0 10]

0 0 1

10"6 0 0

(1.1)

The above matrix has distinct and well-separated eigenvalues. Greenstadt's
algorithm applied to (1.1) produces asequence of matrices which cycles.
The same matrix is invariant under Lotkin's procedure which reduces to

the classical Jacobi method in the Hermitian case. Huang's method

claims to produce amonotonically decreasing sequence of the sum of

squares of the lower triangular elements. At the first step, the

1
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reduction in this sum is a negligible 10 /4, and there is no subse

quent improvement. Example (1.1) is merely the simplest of an infinite

class of matrices on which all known Jacobi variants fail.

We argue here that there are intrinsic limitations in the Jacobi

method; it is not the case that previous investigators have missed the

right algorithm.



CHAPTER II

Definition of Jacobi Methods

II.1 Introductory Remark

In mid-twentieth century, von Neumann and Goldstine rediscovered

Jacobi's method (1846) for diagonalizing a real symmetric matrix.

Active research has been conducted in the modification and generaliza

tion of Jacobi method since then. The convergence of Jacobi-type pro

cedures depends strongly on the way in which they are defined. Too

narrow a definition, then convergence is not possible as indicated

in Section II.2. Too broad a definition, then the basic QR algorithm

can be included (Section II.3).

The trouble with including the basic QR algorithm is that it is

unacceptably slow compared with the shifted QR algorithm which is the

current champion method. Parlett has provided a global convergence

theorem (21) for the basic QR algorithm, whereas there is no guarantee

of convergence with the usual shift strategies which makes the method

so fast. However, no cases are known when the shifted QR fails. The

quality in which Jacobi methods surpass other techniques was their

simplicity. The essential problem is whether some Jacobi algorithm can

be found which achieves convergence without sacrificing too much

simplicity.

11.2 Criteria of Jacobi Methods

Jacobi methods produce a sequence of similar matrices, and plane

rotations are used as matrices of transformations. At each step, the

parameters of the rotation, the plane (p,q) and angle 9, are chosen



according to some rule. In classical Jacobi methods, the plane is

determined by the maximum off-diagonal element and the angle 9 is

chosen to annihilate that element. For cyclic Jacobi methods, the

plane (p,q) is chosen according to some predetermined order and the

angle is selected to maximize the reduction of the quantity, N(•),

which in this case is the annihilation of the (p,q) element. Jacobi

methods for symmetric matrices have several properties in common. Once

the plane (p,q) is selected, the choice for the angle of rotation

satisfies the following criteria.

Criterion 1: The (p,q) element of the matrix is annihilated.

o

Criterion 2: The quantity N (•) is minimized over 9, where
"~~~ 9 2

N2(A) = I |a..|2 for A symmetric and N(A) = J Iaij1
i*j 1J .m 1>J*

for A non-symmetric.

For non-symmetric matrices, these criteria cannot be met simul

taneously (see below). Greenstadt's method employed Criterion 1. The

quantity, N2(-), is not only not minimized; it yery often increases.

There is aclass of matrices which the method fails to converge (Section

III.4.2). Goldstine-Horwitz and Lotkin produced procedures which employ

Criterion 2. Due to algebraic complexity, the minimum has no closed

form. Hence approximations are used. These approximations leave certain

matrices invariant under the algorithm. From the point of view of con-

vergence proofs, it would be sufficient to reduce N(•) by afixed
proportion at each step. Local minimization, even if possible, is a
luxury which can be given up. Huang's algorithm used the following

relaxed form of Criterion 2.



Criterion 3: The sequence {N (A. )} is monotonically decreasing.

For general matrices, Criteria 1 and 3 cannot both be satisfied

simultaneously. Consider a matrix of the following form:

0 a12 a13
0 0 a23

a31 0 0

If |a31|2 <|a12|2+ |a23|2, then a (1,3) plane rotation designed
to annihilate a-, will violate Criterion 3. Since Criterion 1 is

incompatible with Criterion 3, we are tempted to broaden Criterion 1

in a useful way.

W. Givens in 1954 made a useful observation. The (p,q) element

of a matrix can be annihilated by a rotation in the (p,j) or the (k,q)

planes for any k f p or j f q. Such rotations are called Givens

rotations to distinguish them from those of Jacobi. This suggests the

following relaxation of Criterion 1.

Criterion 4: Given (p,q), choose 9 so that the (q,r) element

of the matrix is annihilated for some r f p.

When trying to triangulate non-symmetric matrices by plane rotations,

it seems perverse to exclude Givens rotations just because Jacobi did

not need them for the symmetric case. However, as we shall see, this

enlargement of the repertoire of rotations has far reaching consequences.

Methods not usually associated with Jacobi are seen to be close cousins,

if not within the immediate family of Jacobi methods.



11.3 QR Without Shift as a Jacobi Process

II.3.1 Formal Definition

The QR algorithm uses complicated similarity transformations which

are based on the Gram-Schmidt factorization.

Theorem 2.1 (Gram-Schmidt): A rectangular matrix k3 mxn., m _> n.,

can always be written in the form A = QR where Q is unitary3

and R is upper triangular with non-negative diagonal. The factori

zation is unique if rank(A) = n.

The basic (shiftless) algorithm produces a sequence of similar matrices.

Each matrix in the sequence is determined by the Gram-Schmidt factori

zation of the previous matrix. The k*k term, A., is first decom

posed to

Then the next matrix in the sequence is formed by multiplying the two

factors in the reverse order, i.e.

Ak+1 = RkQk - (2.2)

A.+, is clearly similar to A, since R. = Qj" A. . The above, (2.1)

and (2.2), constitute the formal definition of the algorithm. Explicit

QR factorization requires a large number of operations. Hence in prac

tice A. , is obtained from A. by yery different means. It was

invented by Francis in 1960 (6), and because of his clever use of the

Hessenberg form and origin shifts it soon became the champion eigen

value finder. However it is not a simple algorithm.



II.3.2 Hessenberg Form and the Uniqueness Theorem

Definition 2.2: A matrix A is in upper Hessenberg form if

a. . = 0 whenever i > j+1.

Hessenberg matrices play an important role in the practical QR

algorithm.

Lemma 2.3: The Hessenberg form is invariant under the QR

algorithm.

Proof: By the Gram-Schmidt process if Ak is in Hessenberg form

then so is Q. and also RkQk> because Rk is upper triangular.

Q.E.D.

If the starting matrix A is brought into Hessenberg form, then

all matrices in the QR sequence are Hessenberg. This reduces the number

of operations greatly. To obtain the factors Qk and R^ at each

step of the procedure is a time consuming task. The following fact

makes possible the computation of the QR sequence without computing the

factors explicitly.

Theorem 2.4 (The Uniqueness Theorem): Suppose that F AF = H
-*where H is Hessenberg with positive subdiagonal. If F is

unit triangular or F is unitary then F and H are uniquely

determined by A and the first column of F.

t" h

Proof: Suppose AF = FH. The j column is

av ViVi,j +j/ihij • J31--"-1



— J.L.

where f. is the i column of F and H = (h..). Show that if
•j

columns f., i = l,...,j are known then f.+, and Fi. are determined.
— +•v%

Let gk be either the k unit vector, e., if F is unit

triangular or ?k if F is unitary. Then, in either case gff. = <5..,
k < j. Define

h., = g*(Af,- Y f,h,J , k= l,...,j

Then

h.+1 .= e.+,3.+1 if F is unit triangular

= H3-+,IL if F is unitary

and Vlsaj+l/hJ+l.J' Q-E-°-

II.3.3 The Basic QR algorithm as a Jacobi Method

The formal definition of the QR procedure is best suited for the

study of its properties. In this section, the basic QR algorithm on

Hessenberg matrices will be presented in a way which can be regarded

as a Jacobi method in the sense of using nothing but a sequence of plane

rotations.

Lemma 2.5. A matrix A = (a..) can be brought to Hessenberg

form by a sequence of Givens rotations.



Phase I

To effect this reduction the rotation planes may be chosen

cyclically in the order

(2,3),(2,4),...,(2,n)

(3,4),...,(3,n)

(n-l,n)

However this cycle only has to be traversed once. The angle 9 for

the rotation in plane (j,k), j < k, is given by

tan 9= la^/^j-ll •

This choice annihilates element (k,j-l). See (27, Chap. 6).

Definition 2.6. A Hessenberg matrix H = (h. .) is unreduced if

If the Hessenberg matrix is reduced, then it is of the following

form:

f A A 1HI M12

,0 A22 t

The eigenvalues of A are those of A^ and A22- Therefore A^ and

k?2 can be transformed separately and so, without loss of generality,

A can be taken to be unreduced. In fact, a.+1 ., j = l,...,n-l, can

be assumed to be positive since a unitary normalization can make all non

zero subdiagonal elements positive. This normalization is only needed

for simplicity in stating results.



Phase II

Perform a sequence of rotations in the planes (1,2),(2,3),...,

(n-l,n). The angle <f> for the rotation in plane (j,j+l) is given by

tan ♦" |aJ+l.J-i/aJ.Ml for J>1
= IVi.A.j1 for j =1 •

For j > 1 this annihilates the (j+l,j-l) element introduced on the

previous step.

Phase II is repeated indefinitely. We must now show that Phase II

is equivalent to the basic QR algorithm on an unreduced Hessenberg

matrix.

Theorem 2.7. Let H be an nxn Hessenberg matrix with

h-.i • > 0 for j = 1,2,...,n. Then Phase II is equivalent to
J+l >J

the basic QR algorithm.

Proof: Denote the rotations used in Phase II in planes
n-1

(l,2),(2,3),...,(n-l,n) by F,, j = l,...,n-l. Define Fs It F..
J k=l

By the Uniqueness Theorem, it suffices to show that the first column

of F and Q are identical where Q is the unitary factor of the

Gram-Schmidt factorization of H. The first column of F is simply the

first column of F-j, which is

f hi1 |a2l' 0 0)T
\\*^+\^\hy*\\*u\z+\*Z[\l)u'i'

This is just the first column of Q. Q.E.D.

10



Hence we have shown that the basic QR procedure can be considered

to be of Jacobi type. Even though the procedure does not produce a

monotonically decreasing N (•)» its convergence properties have been

established by Parlett (21). The necessary and sufficient conditions

for convergence are quite complicated, but when the eigenvalues have

distinct absolute value then the algorithm is guaranteed to converge

linearly.

11



CHAPTER III

A Survey of the Jacobi-type Methods

III.l Introductory Remarks

In 1846, Jacobi (16) gave a constructive proof of the fact that

real symmetric matrices have real eigenvalues. It is one of the few

efficient methods which existed before the early twentieth century.

Since its rediscovery in the late forties, various extensions and modi

fications of the Jacobi method have been proposed. These Jacobi-like

procedures have two central ideas. The matrices of transformation were

generally chosen to either annihilate specific elements or to reduce the

sum of squares of the absolute values of the off-diagonal. For the

classical Jacobi method, these two ideas coincide. To avoid repetition,

we shall define some terms which will be used throughout this chapter.

Definition 3.1. Let A= (a..) be an n*n matrix. Define
•<j

S2(A) = I|a..|2

N2(A) = I |a |2

N2(A) = I |a |2.
u i<j J

In several Jacobi-type algorithms, the pivot-pairs are selected in some

cyclic ordering.

Definition 3.2. The order for selecting the pivot pairs is said

to be cyclic by rows if the pivot pairs are selected as follows:

(i0>j0) * (K2)

12



(ik+r,jk+l) " *

(ik,jk+l) if 1k<n-1, Jk<n
(ik+l,ik+2) if ik < n-1, j'k = n .

(1,2) if ik = n-1, jk = n

Similarly for cyclic by columns.

Definition 3.3. Let A be Hermitian. A Jacobi-like procedure is

said to be convergent if

lim Ak = diag(A.j)

where the X.'s are the eigenvalues of A in some order. Conver

gence of a normal matrix to a diagonal matrix is similarly defined.

Definition 3.4. A sequence of similar matrices {A.} is said to

converge to normality if and only if

lim HA. II2 = I |X.|2
k-~> k h j=l J

where \-'s are the eigenvalues of A.

13

III.2 Hermitian Matrices

The eigenproblem is simplest for Hermitian matrices (see Appendix).

The Jacobi-type procedures for the computation of eigenvalues of this

class of matrices use the complex rotations for the transformation. At

each step, two elements in symmetrical positions are annihilated simul-
2

taneously thus causing a monotonic decrease of the quantity S (A). The

major difference between the various methods is in the selection of the

pivot-pair Ok»Jk) at each iteration.



III.2.1 The Classical Jacobi Method

In this process, a sequence of matrices Ak is constructed where

Ak+1 =UkAkUk and A0 =A* Each Uk =R^ik,Jk,6k'ak) is arotation'
If the matrix A is real symmetric, then Uk's are real plane rotations

The pivot-pair (ik>Jk)> is chosen to be the indices of a maximal

off-diagonal element of Ak» that is,

|a.(k), |=max |an(k)| where Ak -(ajk)) .
VJk 1« 1J K J

(k)The other parameters 9k and c*k are chosen to annihilate a.. ^

and a(k^. . Therefore, at each step, S2(A) is decreased by the
Jk9lk

amount 2|a|k). |2.
VJk

Theorem 3.5. The classical Jacobi method converges for real

etric matrices if each angle 9 satisfies 10 { <_ tt/4.symrrii

(See (27), pp. 267.)

Each angle 9 is chosen in the procedure to annihilate some ele

ment a^. The angle 9 therefore satisfies the equation:
pq

tan 28 -2a^/(ai5>-a$J>) .

So 9 can always be taken to lie in the range (-tt/4,tt/4).

Theorem 3.6. For real syrmetric matrices, the classical Jacobi
2 2method converges quadratic-ally, that is, S(A/r+-j)pj) < kS (A^).

(See (27), pp. 267.)

The Jacobi algorithm is quite suitable for desk calculators. In

14



a digital computer, the search for the largest element off the diagonal

is time consuming. The variations on the classical method have sacri-

2
ficed maximal reduction in S for faster pivot selection.

15

111.2.2 The Cyclic Jacobi Method

To simplify the selection of the pivot pair, it is convenient to

choose it in some predetermined order. Probably the simplest scheme is

to take them sequentially, either by rows or by columns. The convergence

properties of this variation of Jacobi's method is quite difficult to

prove. Forsythe and Henrici (5) have proved that if the angles of rota

tion are suitably restricted, then the algorithm converges. More precisely,

Theorem 3.7. For real symmetric matrices, the cyclic Jacobi method

converges if the angles of roz-ation 9k satisfy 6l 6 J where J

is a closed interval independent of k and interior to the open

interva I (-tt/ 2, it/2).

(See (5).)

Theorem 3.8. The cyclic Jacoci method ultimately converges

quadratically.

(See (14) and (18).) The disadvantage of this method is that much time

may be spent in annihilating elements that are already quite small thus

slowing the process considerably.

111.2.3 The Cyclic Jacobi Method with Threshold

To avoid annihilating small elements, a further modification is

made. A sequence of monotonically decreasing threshold values is
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introduced. The sequence can be finite or infinite. The procedure scans

the off-diagonal elements according to some predetermined order, usually

cyclic. Only those elements whose absolute values are larger than the

current threshold are annihilated. If all off-diagonal elements are

less than the current threshold value, then the next number in the

threshold sequence is chosen to replace the current threshold. Clearly

to assure convergence of the algorithm, the threshold sequence should

converge to zero.

Theorem 3.9. For real symmetric matrices, the cyclic Jacobi method

with threshold converges for all mono tonic threshold sequences

converging to zero.

(See (22).) All the theorems in this section are quoted for real symme

tric matrices. For Hermitian matrices, the proofs in the references

can be extended easily.

III.3 Normal Matrices

Normal matrices, like the Hermitian, are unitarily similar to

diagonal matrices. However, a direct application of the classical

Jacobi method to normal matrices leads to unsatisfactory results. As

an example, consider permutation matrices of order n. These matrices

are clearly normal and non-Hermitian. When the Jacobi algorithm is

applied, the sequence of transformed matrices sometimes cycles, and the
2

quantity S (A) does not always decrease. Vie shall discuss two exten

sions of the Jacobi method to normal matrices in the following sections.

One of the extensions was proposed by Goldstine and Horwitz. Their

algorithm attempts to minimize the quantity S (A) at each step.
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Another simpler algorithm utilizes the fact that the Hermitian and the

skew_Hermitian parts of a normal matrix commute (Theorem 0.7).

III.3.1 Goldstine-Horwitz Method

Goldstine and Horwitz (10) used complex rotations R(i,j,9,a) to

diagonalize normal matrices. The algorithm is locally optimal in the
2

sense that at each iteration the reduction of the quantity S (A) is

maximal. The parameters i, j, 9, a were chosen specifically to achieve

this end. The selection procedure is quite complicated, and we shall

not go into the details here. The interested reader can read the

original article (10). Goldstine and Horwitz have supplemented their

algorithm with a special treatment for matrices like the permutation

matrices. With this modification, the convergence of the method can be

proved.

Theorem 3.10. The modified G-H algorithm converges for all normal

matrices.

(See (10).)

Instead of the special method of selection of the pivot-pair, the

row cyclic method can be used. Ruhe (24) has proved that this modified

G-H procedure converges quadratically. The G-H method reduces to the

classical Jacobi method if the matrix is Hermitian.

III.3.2 A Simpler Procedure

There is a more straightforward generalization of the Jacobi process

to normal matrices. From Theorems 0.5 and 0.7, matrix A can be written

as A =•- H+S and if A is normal then we have HS = SH where H is



Hermitian and S is skew-Hermitian.

The procedure constructs again a sequence of matrices Ak where

Ak+1 = UkAkUk = UkHUk +UkSUk' The unitary transformation matrices Uk
are chosen according to one of the Jacobi-like methods to diagonalize

N

the Hermitian matrix H. Define U = n U. . There is a diagonal
k=l K *

matrix A such that A = U*HU. S has been transformed into S' = U SU

which need not be diagonal if the eigenvalues of H are not distinct.

That is, since A and S' commute, S' = 0 implies that A = A .

The 2x2 rotations needed to annihilate the non-zero subdiagonal

elements of S' leave A invariant. Thus the eigenvalues of A can

be obtained as the sum of eigenvalues of H and S.

This procedure is in principle a concatenation of two infinite
2

processes. Although this method does not attempt to reduce S (A) .

maximally, it is not always slower than the G-H method in practice.

III.4 Extensions to Arbitrary Matrices

The major attempts to solve the eigenvalue problem for arbitrary

matrices by Jacobi-like processes can be divided into two categories.

One group was concerned with the triangularization of general matrices.

The idea was based on Schur's lemma (Theorem 0.8) which states that any

matrix is unitarily similar to a triangular matrix. The other group

was interested in reducing arbitrary matrices to normal matrices. The

underlying idea was that

inf IIT^ATII2 = I |a.|2 (Theorem 0.12)
T invertible j=l J

The eigenvalue problem can then be solved by almost diagonalizing the

18
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almost normal matrices. To avoid concatenation of two infinite processes,

Eberlein has produced an algorithm which normalizes and diagonalizes a

matrix simultaneously.

III.4.1 Eberlein's Method

From Theorem 0.12 we have seen that a matrix can be brought closer

to normality by reducing the Euclidean norm of the matrix. Since this

norm is invariant under unitary transformations, complex rotations will

not do. Eberlein has thus chosen the unimodular plane shears as trans

formation matrices. From Theorem 0.12 we have also seen that normality

cannot always be obtained. In practice, it is more advantageous to

normalize and diagonalize a matrix simultaneously.

In Eberlein's method ((3) and (4)), each iteration of the process
-1 *

can be divided into two steps. The first step, Ak = Sk RkAkRksk»

reduces the Euclidean norm of the matrix Ak- The second step mini-

mizes the departure of the Ak's from diagonal form, Ak+1 =u*kAkUk.

The R. and Uk are complex rotations, and Sk are the plane shears,

all having the same pivot pair (ik>Jk)- To avoid excessive repetition,

we shall define the term commutator as follows: C(A) = AA -A A . The

details of the algorithm can be summarized.

(1) At the start of each iteration, the pivot pair is chosen to
2

insure a bounded reduction of UC(Ak)llE.

(2) The parameters of the complex rotation of Rk(0»a>ik>Jk) are

chosen to maximize c. . where C=c(RkAkRk) = ^ci,j^*
The purpose of this rotation is to prepare the matrix for norm reduction.

This is a pre-treatment step.
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(3) The parameters of the unimodular plane shears are chosen to

2
minimize IIAJL. The correct values for these parameters,

where the minimum is attained at that step can be found by

solving two simultaneous quartic equations. This is not always

an easy task. Eberlein thus gives an explicit approximation

to these optimal parameters.

(4) The parameters of the complex rotation Uk are chosen accord

ing to one of the methods in Section III.2.

If the starting matrix is normal then Eberlein's method reduces to those

mentioned in the previous section.

Eberlein proved that if the pivot pairs are suitably chosen, then

the sequence {Pi.} converges to normality independently of the choices

of U.. However, the global convergence to diagonal form for all

matrices cannot be proved.

III.4.2 Greenstadt's Method

This method is the application of cyclic Jacobi method to general

matrices. The 2x2 non-trivial principle submatrix of the matrices

of transformation can be written in the form

a -auk

, auk a

-117.where a = (1 +ykuk) and p. is the root of smaller modulus of the

quadratic equation

i<k\i2 (a(k' a<k>Vj - a(k) - 0aij Mk ' (ajj "aii H aji "° '

By the manner in which the parameters a and pk are chosen and from



the work of Forsythe and Henrici, the method converges if A is Hermi

tian (5). For general matrices, however, the result is not so satisfac

tory. There is one class of matrices which produces either cycling or

invariance when this algorithm is applied independent of the pivot

strategy. These matrices have equal diagonal elements such that for

each pair of off-diagonal elements, a.., a.., exactly one of them is

zero and such that there are at least two non-zero elements in ewery row

and column (2). For example, take the matrix

A =

M 1 0 )

0 1 1

1 0 1 j

Greenstadt*s method produces the following sequence of similar matrices

(1):

Al =

V

A5 =

1 0 -1

-1 1 0

0 1 1

Moil

i l o

o i l

1 Oil

-1 1 0

0 -1 1

' 1 1 0 '

A2 = 0 1 -1

> -1 0 1
J

' 1 -1 0 '

V 0 1 1

-1 0 1

A6 = A

Different pivot strategies give similar results.

The difficulty of Greenstadt*s method is that not only does it not

2
reduce maximally the quantity S (A) as do the classical Jacobi and

Goldstine-Horwitz methods, but sometimes it increases it.

21
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III.4.3 Lotkin's Method

As we mentioned in the beginning of this chapter, there are two

approaches in Jacobi-type processes. The first is to annihilate some

specific elements and the second is to reduce the norm of the lower (or

upper) triangular elements a significant amount. Greenstadt concentrated •

on the first; Lotkin chose the second.

Lotkin specifies that the triangular part with lesser norm be cho

sen for annihilation. Since the object of the procedure is to have A.
In

O O

tend to a lower triangular matrix, therefore if N (A) >_ fr(A) then set

AQ =A . Let Uk be the matrices of transformation. The 2x2 principal

submatrix of Uk is of the following form:

1*k
cos 9.e

sin 0.

-sin 9,

cos 9ke
-i*k

Lotkin intends to choose 9k and <j>k so that N2(Ak+,) would be a
minimum. But the determination of <J>k is quite difficult. Lotkin (19)

has given explicit approximations for these parameters. When the

matrix is Hermitian, it reduces to the classical Jacobi method.

The convergence properties of Lotkin's method have not been esta

blished. In fact, Lotkin's method fails to triangularize the following

matrix:

f 1 1 0)

0 1 1

1 0 1

The angle of rotation obtained from his formulae is null. Despite
2

Lotkin's aim to reduce N (Ak) a maximal amount at each step, his



algorithm has failed to produce a monotonically decreasing sequence

{N2(A,)}. See Causey (1) for details.
u is
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III.5 Summary

We have seen in this chapter the evolution of Jacobi-like procedures.

The various processes have given a satisfactory solution to the eigen

value problem of Hermitian and normal matrices. For general matrices,

Eberlein has produced a solution. If we, however, confine ourselves with

true, that is unitary, Jacobi processes, then the existing algorithms

and their experimental results are not quite satisfactory.
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CHAPTER IV

Huang's Algorithm

IV.1 Introductory Remark

Huang's algorithm is also a Jacobi-type procedure for the triangu

larization of arbitrary matrices. The other methods by Greenstadt and

Lotkin, as described in Chapter III, are straightforward generalizations

of the original method, Greenstadt's algorithm is essentially the cyclic

Jacobi method; it annihilates the lower triangular elements in some

predetermined order. Lotkin's procedure generalizes the classical Jacobi

method by minimizing the sum of squares of absolute values of upper (or

lower) triangular elements. Huang's algorithm differs from these methods

in that it is not a simple extension of some existing procedure. The

algorithm produces a monotonically decreasing sequence {N (Ak)} where

N2(A) = I |a..|2. This is aproperty which neither of the above two
i>j 1^

procedures enjoy. We shall describe the algorithm in some detail in the

next section.

IV.2 Description of the Algorithm

The algorithm uses the complex rotations R(i,j,9,a) as transfor

mation matrices. At each step, the element ai+1>i is annihilated with

the objective of reducing the quantity N2(A). When special cases occur,
different strategies must be adopted to achieve this aim.

Huang's algorithm can most easily be described inductively. For

the sake of clarity, we shall investigate the case n = 3 first.
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IV.2.1 The n = 3 Case

First we note that any 2x2 matrix can be triangulated by a

complex rotation in the (1,2) plane. Clearly if the matrix has com

plex eigenvalues and the matrix itself is real, then the parameter a

will not be null.

Let us now consider a 3x3 matrix A=(a^-). If we perform a

complex rotation in the (1,2) plane to annihilate a21, then the
? 2quantity N (A) will decrease by exactly |a21| . If we perform a

(2,3) plane rotation on the resulting matrix A' = (a!j) to annihilate

a', then N2(A') will be reduced by |a^2|2- By repeating this pro-
cess, we obtain amonotonically decreasing sequence {N (Ak)}. The

sequence will converge to zero unless at some iteration k, Ak is of

the form

V

M a(k) _(k) ia,, a12 a13

.(k) _(k)
a23
Jk)

ln

0

a{k)^ a3l

l22

0
33

(4.1)

It is in general false that aj^ and a^ are exactly zero for some
k. However since a\V -> 0 and a^,/ -+ 0 as i•* °°, we have within
the limits of computation a£k' =0 and a^ =0 for some k. A
matrix of the form (4.1) is the special case referred to above where the

2
rotation parameters are chosen to decrease N (Ak) without attempting

to annihilate any element. Huang treats this case as follows.
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Case 1. ajk) f d>£ . pivot pair =(1,3)
After straightforward calculations we have, for any R(l,3,a,9)

Ak =N2(Ak)-N2(Ak+1)
= 2

- si

cos2etaneRe(e1oa5{){a{{)-ag)))
in2e(i.{1k,-.g)i2*i.{5,i2-i.Sf,i2*i4S)i2*h(2k,i2
-Icos'^^-slnetajp-a^)!2)

•; r ^ -ia, a _iawhere 5km = akme +amke

>2cos26tane Re^a^i^-i^}) -sin28-F
\kere F-|.jkU<«|2 ♦ |.{«|2 -|a<k)|2 ♦ lag1!2 ♦ |.j«|2 ..

The aim is to choose 9 and a so that Ak would be maximal or simply

positive. Huang did not give an explicit formula,for computing the

optimal parameters 9 and a. But if 9 is chosen to satisfy

Re(eiaa^(5^-4k)))3] J' 33 when F f 0
tan 9 = <

R̂e(eiaa^i{kU<k))) when F = 0,

then Ak is greater than zero.

After this transformation, the form (4.1) is destroyed so that

the regular procedure can be begun again.

Case 2. If a|k^ =a^ and ajk) t a^ then apair of rotations
is applied. The first rotation is in the (1,2) plane. Its pur

pose is to interchange a^ uith a£2 wiiliout changing the
value of N (A.). The rotation angle is defined by

-e (a^ -a22 )
tan 0 = m •

al2



It is easy to verify that this angle 9 does indeed achieve the above

aim. After this rotation, the element a<k+1) of the new matrix is no
longer null. The second rotation thus has pivot pair (2,3), and the

parameters 9 and a are chosen to anmhi late a32

Case 3. a,^ =al^ =a^' . In this case, with no loss of
generality, the matrix is of the following form

M Jk)

Ak =

0

0

t(k)
l31

l12

0

0

13

(k)
23

(4.2)
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The pivot pair in this case is (2,3). The angle 9 can be chosen
2

to maximize the reduction of N(Ak).

(1) If a^k) =0 then Ak=S2|a^k)|2 where S=sin 9.
Therefore for maxirmm reduction, take 9 = tt/2.

(2) If a<k) *0 and \<^ \>\^\ then
Ak >sin29 cos29|a^k)|2, so zake 9=tt/4.

(3) If a^k) /o and iajk)| <|a<k)| then take
sin29 =|a^|2/2la23^2 for maximAin reduction.

After this rotation, a^k+1)" is no longer zero. A (1,2) plane rota
tion can be initiated to annihilate a^k+lj. Note that the reduction of
N2(-) is not caused by the (2,3) rotation alone but by the pair of

(2,3) and (1,2) plane rotations.

The above procedure for the 3x3 matrices can be summarized as

follows:
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Step 1. Repeatedly apply (1,2) and (2,3) rotations to annihi

late a^k) and d^ respectively. The sequence
{N2(A. )} is monotonically decreasing and thus converges.
If the limit is zero then the matrix becomes upper trian

gular, and we are done. If the limit is positive then

within the limits of computation for some k, Ak must be

of the form (4.1). In this case proceed to Step 2.

Step 2. (1) If *$ t 4^ then do a (1,3) plane rotation
which reduces N (Afc), and go to Step 1.

(2) If ajk)=a5k) and ajk) f J§ then do a (1,2)
rotation to interchange a^ and z.^ > and do a

(k+1)(2,3) rotation to annihilate a^ * 9° to steP 1'

(3) If a\V =ai2' =aij^ then the matrix is of the
form (4.2). In this case do a (2,3) rotation and

go to Step 1.

We note that adjacent plane rotations are used heavily in this algorithm.

From Theorem 0.13 we can see that using an (1,1+1) rotation to anni

hilate a.., • automatically reduces N2(A) by the amount |a.+1>il
1T 1,1

2

IV.2.2 The nxn Case

In the last section we have seen Huang's algorithm for the n=3

case in detail. For matrices of order n, we shall describe the algo

rithm briefly and inductively. Let A= (a..) be amatrix of order n.

Initial Step, n = 2

A can be trivially triangulated by one rotation.

Inductive Step, Assume that amatrix of order (n-1) can be triangulated



bythealgorithm.Considermatricesofordernoftheform

A=

ana12•••al,n-laln

a21.a22
i
i

a2,n-la2n

an-V,l

i

l

iVl,n-1

•Vl
.a«

In,2
ai
n,n-l

a
nnJ
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whereS1andS?aretheupperandlowerprincipalsubmatricesof

order(n-1)ofArespectively.TheproceduretotriangularizeA

canbestatedasfollows.

Step1.ApplytheprocedurerepeatedlyfirsttoS,,thentothe

resultingS«.Iftheresultingmatrixistriangularthen

wearedone.Otherwise,attheendoftheprocess,the

matrixiswithindesireddegreeofaccuracyoftheform

Step2.

,(k)Ak)
a12
Ak)

'11

o

a(k) ^anl

l22

0

.(k)i
lln
,(k)
*2n

0a(k)
nn

(4.3)

witha'-,t0.Inthisease,proceedtoStep2.
(1)Ifa,/athenitispossibletodoa(l,n)
X-L/J11rnn

2
planerovuH-j--:i-oreduceN(Ak).Afterthisrota

tion,ifthantrixisnolongeroftheform(4.3),

proceed',/Szz?1.Iftheresultingmatrixisstill

offorri(-'..?),yp.v^.atStep2.



(2) If aii = a* ' and there exists k' such that
1 ' J 11 nn

a<kj>. ,a}k> a*d ajk) =a<k), /or «« i<k
(kl (k)then interchange a^' wttft a^,. This process

2
does not alter the value N (Ak) if tfce interchanges

are performed in a particular way with angles of

rotation specifically chosen. The resulting matrix

has a 2 r 0, therefore go back to Step 1 to

triangulate the lower principal submatrix S2-

(3) If all the diagonal elements are equal, that is,

without loss of generality the matrix can be assumed

to have the form

0

{(k)
lnl

t(k)
l12

0

0 a

lln

(k)
n-1 ,n

30

Then apply a rotation in the (n-1,n) plane and go

to Step 1 since the resulting matrix has a -| j

non-zero. The parameters 9 and a of R(n-l,n)
2

can be chosen to maximize the reduction of N (A.)

assuming that S, can be triangulated in Step I.

This concludes our brief description of Huang's procedure. For detailed

computation and proofs see (15).



IV.3 Discussion

The ingenuity of the algorithm lies in its success in dealing with

the classes of matrices which would either cycle or be stationary under

other simpler procedures. The effective use of the inductive method

contributes to the simplicity of the algorithm. However due to this

inductive nature of the process, Huang's algorithm is a concatenation

of infinitely many infinite procedures. Since the algorithm is not

concerned with the amount of reduction of the sum of squares of abso

lute values of the lower triangular elements, except in very few of

the steps, much time may be spent on annihilating the already small

elements. Therefore, this algorithm would probably be noncompetitive

with other existing algorithms. It is true that at each step of the

procedure, the quantity N (•) can be reduced either at the current

or at the next step. However, the reduction may be arbitrarily small.

In this section, we will examine the procedure in more detail and point

out some possible alternatives and improvements.

IV.3.1 Angles of Rotation to Achieve Annihilation

Let us take a closer look at Step 1 of Huang's algorithm. We

shall examine the case n = 3. In Step 1, when a matrix has reached

the form

all a12 a13

0 a22 a23

a31 ° l33 >

then it was suggested that this matrix will remain stationary under

further application of Step 1. This statement, is not true. In this

31



section we will show that the only stationary form of Step 1 is of form

(4.2) (all diagonal elements equal) instead.

Let a rotation in the (1,2) plane be applied to the matrix of

form (4.1). The element a2, will be transformed to aA, in the

following way.

^ =-e'^csa^ +e"lctcsa22 -e" las a12

where c = cos 9 and s = sin 9. In order to prevent an increase in

p
N (A), ai, has to remain null. The parameters 9 and a thus have

to satisfy

e~lacs(a22-a,.j) -e" las a12 =0.

There are two angles of rotation which can achieve this:

(1) Obviously 9=0 is a solution.

(2) tan 9=ela(a22"an^a12 is anotner-
The second solution coincides with the first if and only if the two

diagonal elements are equal. We have seen then that matrices of form

(4.1) are not invariant under Step 1. If a^ = a22 but a22 f a33

then similarly there is an angle 9 f 0 such that a (2,3) plane rota

tion will annihilate a32- Therefore, we have shown that the stationary

matrices of Step 1 are of the form (4.2) where all diagonal elements

are equal. We note that the non-zero angle of rotation in these cases

is the angle used to interchange unequal diagonal elements in Step 2

of Huang's algorithm.
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IV.3.2 A Simplification of the Algorithm

We will first describe Step 2-(2) of Huang's algorithm in more

detail. The matrices in Step 2 have the form (4.3). If a^ = ann

and there exists k such that akk f a^ and a^ =a^. for all

i< k, then a.,, will be interchanged with akk in the following

manner. We will interchange akk with ak_] ^-j» tnen ak-1 ,k-l

with ak 2k_2 etc. until finally a22 is interchanged with air
This last rotation in the (1,2) plane will cause an2 to become non

zero. In this step, the diagonal elements are being interchanged up

the diagonal. It is perfectly reasonable to interchange them down the

diagonal. In the latter case the last rotation will be in the (n-l,n)

plane, and the element ap -j 1 will become non-zero instead. This

observation makes Step 2-(l) of Huang's algorithm totally unnecessary.

We will describe the simplified method as follows:

Step 1. Same as Huang's procedure.

Step 2. Let I be such that ajk' f aj£ and aii =aii for
(k) (k)all i<& and m be such that ann f a^ and

a^ =a^ for all j>m. If I exists then let
nn jj J

k = min(U-l),(n-m)).
(k)Case 1. If k = £-1 then interchange a^' wvth

4-Ur then al-Ui w1th 4-U-2' ^-
until finally <r22 is interchanged with a^

ln2After this s-jep, a*k+1' f 0. Go to Step 1.
(k) .,,Case_2. .// k = n-m than %ntere.nange amm with

tS^ +hr» a^k) ! with a^ki mX0 etc.am+l,m+V dm+l,m+l m+2,m+2
until finally a*k] n_-, is interchanged with

33
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a(k). After this step, a^J1} t 0. So go
nn J n-i,i

back to Step 1.

If % does not exist then the matrix has equal diagonal elements. In

this case go to Step 2-(3) of Huang's scheme.

IV.3.3 The Elimination of the Concatenation of Infinite Processes
In the Case n = 3

Huang's procedure is aconcatenation of infinitely many infinite

processes. This is not adesirable characteristic. In this section we

will show that for 3x3 matrices, the algorithm can be changed to

yield one infinite process.

From Section IV.3.1 we have seen that the matrices that are invariant

under further applications of Step 1 have equal diagonal elements.

Huang's scheme for the case n =3 thus reduces to:

Step 1. Same as described in Section IV. 2.1.

Step 2. Same as Step 2-(3) in Section IV.2.1.

Step 1is itself an infinite process. To eliminate the concatenation

of infinite procedures, one has to apply Step 2prior to the 'end' of

Step 1. The question to be answered then is how small must the quantities

|a21|, |a32|, |D12|, |D23| be in order that the parameters of the rota
tion in Step 2can be chosen to yield areduction in N (A), where

D = a..-a..? We have seen in Section IV.2.1 that if a21, a32, D12
ij n JJ 2,

and D„ are null then arotation can be chosen to reduce N(A) pro-
Cm W

vided that aj, is annihilated by the next (1,2) plane rotation.
Let A = (a.-) be a 3*3 matrix. Then

N2(A) -|a21|2+ |a31|2+ |a32|2. Let
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A' =R*(l,2,92,a2)R*(2,3,91,a1)AR1(2,3,ei,a1)R2(l,2,92,a2) where R2
is chosen, to annihilate the (2,1) element of R*ARr Suppose that

the quantities |a21|, |a32|, |Dl2| and |D23| are less than some
e > 0. The aim is to find this e such that the parameters 9] and

a, can be chosen to yield N2(A*) <N2(A).

We have, after the rotations R-j and R2,

9 -ial 2 *2ial 2 ,2 , "1al x i2N2(A') =|-e 'csD23+cS32-e ls a23| +|-e sa21+ca3li
ict=c4|a32|2+s4|a23|2 +c2s2|D23|2 +2c3sRe(e ^D^)

9 9 2i0tl 3 1ai - n
-2c sRe(e a32523) "2cs Re(e D23a23}

+c2|a31|2 +s2|a21|2 +2csRe(e ^a^)

where c = cos 9. and s = sin 8-j.

A= N2(A)-N2(A')
=(l-c4)|a32|2+c2|a21|2 +s2|a31|2-s4|a23|2-c2s2|D23|2

Q ia, o2 2iai - x- 2c sRe(e a32023> +2c s Re(e a32a23)

+2cs3Re(e ^^a^) - 2csRe(e ^^a^) (4.4)
Ml-c4)|a32|2 +c2|a21|2 +s2!a31|2-s4|a23|2-l|D23|2

" la32l|D23l--2-|a32lla23l-lD23Na23l-la3llla2ll
« 1 1 a 2 2 1using |cs| <. 2 and c s < j

>_s2\,3/s%2/-le2-4\,23\*\^\) • (4-5)

If e=0 then A0!S2|a31|2-s4|a23|2 which is maximum at e] =\
if la31|2/2|a23|2ll and at s2 - la31 |2/2|a23|2 if |a31 |2/2|a23|2
< 1.



Case 1. If |a31|2/2|a23| >1 then choose s=1. From equation
(4.4) we have

2 . , .2 , ,2
*32» '

> 0

A= la32l +la31l -la23

for any magnitude of Ja^l, |a32L 1^12^ '̂ 23^
? ? 2 2 2Case 2. 1/ |a31| /2|a23| <1 then choose s = |a3]| /2|a23| .

From equation (4.5) we have

A>l|a31|4/|a23|2-§s2-e(§|a23| +|a31l)

A > 0 if and only if

f(e) =f€2 +e(||a23| +|a31l)-lla3ll4/|a23l2
< 0

f(e) is a quadratic equation in e with roots 6,, €2

real and e, > 0, e2 < 0. f(e) <0 for all e2 <e< e^

Therefore, from the above analysis, the concatenation of infinite proce

dures can be eliminated in the n = 3 case. Note also that if

g(e) - -e and eQ is such that f(eQ) =g(eQ) then for |a21| <eQ,

a pair of rotations R,, R« defined above will reduce the quantity

N2(A) more than if a21 is simply annihilated by one rotation. In
eliminating the concatenation of infinite processes, we were only

2
interested in a positive reduction of the quantity N (•)• The magni

tude of the reduction is not guaranteed.
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IV.3.4 Non-convergence

Huang's algorithm produces a sequence of similar matrices with

monotonically decreasing N2(«)- However, the decrement can be arbi

trarily small, and because of the limits of computation, it is not

always bounded away from zero. This point can be illustrated by the

following example.

Let

A =

0 1 0

0 0 1

ID"9 0 0

When Huang's algorithm is applied to the above matrix, the following

two rotations are performed:
-Q

. JO \(1) A (2,3) plane rotation with 9 = arcsin( ).
v2

(2) A (1,2) plane rotation is performed to annihilate the

(2,1) element of the new matrix.

After this iteration, the quantity, N2(«), is reduced by

A =
l31 10

-36

4la231

which is positive, but with the limitations of most computing machines,

the reduction is regarded as null.
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APPENDIX

In this section we shall give an account of the basic theory which

is used in previous chapters. The proofs of the theorems will not

always be given. Interested readers can either prove them as an exer

cise or read the cited references. We shall begin with a few elementary

definitions of matrix theory.

Let A be an nxn matrix.

Definition 0.1♦ A is symmetric if and only if A = A .

Definition 0.2. A is Hermitian if and only if A = A (where

A* = A if A is real). A is skew-Hermitian if and only if

A* = -A.

Definition 0.3. A matrix A is unitary if and only if A A = I.,

-1 *
that is, A = A .

th
Definition 0.4. The function det(A-AI) is a n degree poly~

nomial in X. In the complex number field, it always has n roots,

\,,Lj" ••>* • The \.'s are called the eigenvalues of A. Corres

ponding to each X., the set of n homogeneous linear equations

Ax. = X.x. has at least one non-trivial solution x.. Such a

solution is called an eigenvector corresponding to that eigenvalue.

Definition 0.5. Let T be any non-singular matrix. If B = T AT

then A and B are said to be similar. Transforms, S AS, of

A are called similarity rransformati.un&, and the matrix S is

called the matrix of tvancfovrratio:.

We shall list below some elementary facts, The proofs can be found in
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any introductory linear algebra book.

Theorem 0.1. The eigenvalues of Hermitian matrices are real.

Theorem 0.2. Hermitian matrices have n linearly independent

eigenvectors.

Theorem 0.3. Similarity transformations preserve eigenvalues,

that is, A and T AT have the same eigenvalues.

Definition 0.6. A matrix A is normal if and only if AA = A A.

One very important characterization of normal matrices is the following.

Theorem 0.4. A matrix is nomal if and only if it is unitarily

similar to a diagonal matr-lx (see (27), pp. 51-52). That is, the

matrix S in Definition 0.5 is unitary.

Theorem 0.5. Any matrix A can be written as a sum of a Hermitian

matrix and a skew-Hermitian matrix.

Proof: Let H = (A+A*)/2 and S = (A-A*)/2. Then clearly H is

Hermitian, S is skew-Hermitian, and A = H+S.

Theorem 0.6. Let A be normal and have eigenvalues u. + iv..

Then the Hermitian part of A has eigenvalues u., and the skew-

Hermitian part of A has eigenvalue iv..

Proof: By Theorem 1.4, there exists an unitary matrix U such

that U*AU = diag(u.+iv.). We have then U*A*U = (U*AU)* = diag(u,-iv.)
J J J J

and



U*(^f-)U =diag(Uj)
U*(^-)U =diag(iv_.) .

Theorem 0.7. A matrix A is normal if and only if its Hermitian

part (A+A*)/2 and its skew-Hermitian part (A-A )/2 commute.

Theorem 0.8 (Schur's Lemma). For any matrix A, there exists a

unitary matrix U. such that U*AU is of upper triangular form

(see (27), p. 50).

Definition 0.7. Let A = (a. .). The Euclidean norm of A is
n

defined by HAIL =( £ |a. .|2)1/2 =/trace(A*A). This is also
E i,j=l 1J

called the Schur norm and the Frobenzus norm.

Theorem 0.9. II* HE is invariant under unitary transformations,

||UAVHE = 1IAIIE for U, V unitary.

Proof: IIUAVl2 = trace(V*A*U*UAV)

= trace(V*A*AV)

= trace(AVVV)

= trace(AA*)

= trace(A*A) using trace(XY) = trace(YX)

repeatedly

= IIAllE .

Theorem 0.10. For any matrix A with eigenvalues X., we have
~ 9 n 9IIAll^ > I |X.| ; equality holds i- and only if A is normal.

h '" j=l J

Proof: This follows directly from Theorems 0.4, 0.8 and 0.9.
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Definition 0.8. An n * n matrix A is said to be defective if it

does not possess n linearly independent eigenvectors.

Theorem 0.11. A matrix is defective if and only if it is not

diagonalizable (see (27), p. 9).

Definition 0.9. Define D(A) =(IIAil2- I |X.|2)1/2, and callt i=1 i

D(A) the departure from normality of A.

Theorem 0.12. For any matrix A, inf D(T~ AT), over all inver-

tible T, is zero. The infimum is a minimum if and only if A

is not defective (see (22)).

This result suggests that one can minimize D(A) to produce a similar

almost normal matrix. However it also assures us that normality is not

always obtainable.

We have seen that it is theoretically possible to daigonalize

a normal matrix and to triangularize a general matrix by a unitary

similarity transformation. In general, this matrix of transformation

can only be obtained as a product of infinitely many matrices. We

shall describe below the particular classes of matrices that characterize

Jacobi type methods.

Let R be a linear transformation from the real n-space to itself

which rotates the (i,j) coordinate plane through angle 9. The

matrix representation of R differs from I, the identity matrix,

only in elements r^., r^, r... r^ where

r.. = r.. = cos 8

r.- = -sin 9 if i < j

r.- = sin 6



We shall denote this matrix by R(i,j,9). In the complex case, we

have R(i,j,9,a) which differs from I also in the elements r^,

r.., r.., r... In this case, we have

r.. = r.• = cos 9
n JJ

r.. = -sin 9e~ia if i < j
U

r.. = sin 9e
Ji

Matrices R(i,j,9) are called plane rotations, and R(i,j,9,a) are

called complex rotations. The pair (i,j) is called the pivot pair

of rotation R.

Rotations preserve angles. We have another type of matrix called

a plane shear which preserves areas. Plane shears also have deter

minants equal to one, but they are not unitary. We denote these

matrices of transformation by S(i,j,9,a) =(spq). We then have

s „ = 6nn if p, q t i, j
pq pq

s.• = s-. = cosh 9
n JJ

s.. = -s.. = -ie1asinh 0 (assume i < j) .
U Ji

These matrices can be used to produce almost normal matrices which are

similar to arbitrary matrices.

Let U be a real or complex rotation with pivot pair (i,j) and

parameters 9, a. Let an arbitrary matrix A be transformed by U.

The resulting matrix A' = U*AU has elements

a™ = ann for P» 3 * ^j
pq pq

a' = cos 0 a. + e1usinO a .
!P ]P JP for p M, j

a' . = cos 0a. + e"1(Ysin o &,
pi pi PJ
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a'. = cosOa; - e"lasin6a.
JP JP , ip for p ji i, j

apj =c0s9apj "e. Sin6api
ai. = cos 6a.. + elacos9sin 6a.. + e"1acos9sin 9a.. + sin 9a..

n n ji iJ JJ

a1.. = -eiotcos9sin 9a.. - e 1asin 9a.. + cos 9a-. + e1acos9sin 9a..
1J I * J ' ' O J J

• 9-J 9 9

a'.. = -e"1acos9sin 9a., - e" sin 9a,, + cos 9a,.
JI II " Kl \J *

+ e~lacos 9 sin 9a..

a'. = sin29a._. - e1acos9sin 9a.. - e~1acos 9sin 9a.. + cos 9a..
jj ii J' *J jj

From the above formulas we have the following often used result.

Theorem 0.13. Let U = R(i,j,a) or U = R(i,j,9,a). Let

A' = U*AU = (a'. .). Then for p M , j, we have

(see (5)).

i«. |2+|a'. I2
ip1 ' JP1

2 . ,_, ,2
='aipi2 +iajPi2

iapi^+iapji^iapii2 +iaPj'2

Theorem 0.14. Any 2x2 complex unitary matrix may be obtained

from the formula

16

V =

cos 9e1cx -sin 9e

sin 6elY cos 9e15

where 0, a, &, Yj <$ are real and a-B-Y+6 = 0 (mod 2tt)

(see (D).

Theorem 0.15. Every ortho?-0'^il matrix with determinant +1 can

be expressed as a product of plane rotations (see (20)).



This suggests that the subset of complex rotations is a large enough

subset of 2x2 unitary matrices for them to be effective tools in

diagonal!'zing or triangularizing matrices.
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