Description
Part I describes discriminative methods for modeling visual realism and photograph aesthetics. Directly training these models requires expensive human judgments. To address this, we adopt active and unsupervised learning methods to reduce annotation costs. We then apply the learned model to various graphics tasks, such as automatically generating image composites and choosing the best-looking portraits from a photo album.
Part II presents approaches that directly model the natural image manifold via generative models and constrain the output of a photo editing tool to lie on this manifold. We build real-time data-driven exploration and editing interfaces based on both simpler image averaging models and more recent deep models.
Part III combines the discriminative learning and generative modeling into an end-to-end image-to-image translation framework, where a network is trained to map inputs (such as user sketches) directly to natural looking results. We present a new algorithm that can learn the translation in the absence of paired training data, as well as a method for producing diverse outputs given the same input image. These methods enable many new applications, such as turning user sketches into photos, season transfer, object transfiguration, photo style transfer, and generating real photographs from painting and computer graphics renderings.