Description
We begin in Chapter 2 by examining the hierarchical semantic structure that naturally emerges in convnet representations from large-scale supervised training, even when this structure is unobserved in the training set. Empirically, the resulting representations generalize surprisingly well to classification in related yet distinct settings.
Chapters 3 and 4 showcase the flexibility of convnet-based representations for prediction tasks where the inputs or targets have more complex structure. Chapter 3 focuses on representation transfer to the object detection and semantic segmentation tasks in which objects must be localized within an image, as well as labeled. Chapter 4 augments convnets with recurrent structure to handle recognition problems with sequential inputs (e.g., video activity recognition) or outputs (e.g., image captioning). Across each of these domains, end-to-end fine-tuning of the representation for the target task provides a substantial additional performance benefit.
Finally, we address the necessity of label supervision for representation learning. In Chapter 5 we propose an unsupervised learning approach based on generative models, demonstrating that some of the transferrable semantic structure learned by supervised convnets can be learned from images alone.