Many microprocessor instruction sets include instructions for accelerating multimedia applications such as DVD playback, speech recognition and 3D graphics. Despite general agreement on the need to support this emerging workload, there are considerable differences between the instruction sets that have been designed to do so. In this paper we study the performance of five instruction sets on kernels extracted from a broad multimedia workload. Each kernel was recoded in the assembly language of the five multimedia extensions. We compare the performance of each extension against other architectures as well as to the original compiled C performance. From our analysis we determine how well multimedia workloads map to current architectures, what was useful and what was not. We also propose two enhancements to current architectures: strided memory operations, and superwide registers.
Title
Measuring the Performance of Multimedia Instruction Sets
Published
2000-12-21
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-00-1125
Type
Text
Extent
61 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).