The termination insensitive secure information flow problem can be reduced to solving a safety problem via a simple program transformation. Barthe, D'Argenio, and Rezk coined the term "self-composition" to describe this reduction. This paper generalizes the self-compositional approach with a form of information downgrading recently proposed by Li and Zdancewic. We also identify a problem with applying the self-compositional approach in practice, and we present a solution to this problem that makes use of more traditional type-based approaches. The result is a framework that combines the best of both worlds, i.e., better than traditional type-based approaches and better than the self-compositional approach.
Title
Secure Information Flow as a Safety Problem
Published
2005-06-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-05-1396
Type
Text
Extent
16 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).