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Abstract

Many analysis applications in areas such as
finance and energy monitoring require the re-
peated execution of expensive modeling func-
tions over streams of rapidly changing data.
These applications can often be expressed
declaratively, but current continuous query
processing technology does not provide ade-
quate performance in the presence of these
expensive functions. For important classes of
real-valued functions evaluated in predicates,
we use Taylor approximations to determine
ranges of stream inputs for which the system
knows the outcome of the predicates for po-
tential query results. We show how to in-
tegrate this technique into a prototype con-
tinuous query processor. We then report on
experiments for a financial application using
real bond market data. The experiments show
that our techniques significantly reduce the
number of function calls compared to tradi-
tional memoization.

1 Introduction

In many analysis applications, users need to execute
expensive real-valued functions on streaming continu-
ous data. We define real-valued functions as those that
take at least one real number as input and produce
real numbers as results. In bond markets, for instance,
bond traders typically use bond models to determine
a price for a given bond. Bond models output a price,
usually as a real number, based on input data about
the bond and current economic data. Bond traders
need models because, unlike stock markets, complete
and current bond price information is often unavail-
able. Traders often make deals over the phone, and
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the prices in these deals are not made public. As eco-
nomic and bond data changes, bond traders may want
to run data through their models in real-time, and re-
ceive alerts based on these results. Many bond trading
applications can be expressed declaratively. Consider
the following continuous queries:

/* Q1: Tell me when a bond with a 30-year maturity
in my portfolio is worth more than C dollars */

SELECT BD.*,IR.*

FROM BondData BD, IntRate IR

WHERE model(BD,IR.rate) > C AND BD.maturity = 30yr

AND BD.numHeld > 0;

/* Q2: Tell me when a bond with a 30-year maturity
not in my portfolio is worth more than a
bond with a 30-year maturity in my portfolio */
SELECT BM.*,BP.*,IR.*
FROM BondData BP, BondData BM, IntRate IR,
WHERE model(BM,IR.rate) > model(BP,IR.rate)
AND BP.maturity = 30yr AND BM.maturity = 30yr
AND BP.numHeld > O AND BM.numHeld = 0;

In these queries, BondData is a relation that con-
tains a tuple for each bond in the market. IntRate is
a stream of the current market interest rate, measured
with the current yield on a 10-Year U.S. Treasury Bond
as IntRate.rate. model is a bond model that takes a
BondData tuple and a current interest rate in the form
of a Treasury yield. Generally, bond data used in mod-
els changes infrequently !, so we can represent it as a
relation. On the other hand, there exists one 10-Year
Treasury yield at a given time, and this yield changes
many times per day. model takes a real value as input
(IntRate.rate) and outputs a real price; thus, it is a
real-valued function.

Unfortunately, many bond models compute prices
based on expensive numerical methods, and some in-
put data such as interest rate changes rapidly. For ex-
ample, the authors of [9] needed a cluster just to run
their model in experiments involving only a few bonds.
Bond traders could not possibly run this model for ev-
ery bond on the market each time interest rate data
changes. For real-time applications, traders must ei-
ther use cheaper models that include less information
or use stale function results to answer queries. Neither
of these solutions is ideal for applications where timely
and accurate data are critical.

1See [14, 6] for more information on bond data used in bond
models.



In addition to bond traders, many other users would
like to run current data through expensive real-valued
functions and receive alerts based on the result. For
instance, power companies have models that predict
how much power they will need in the future based
on inputs such as weather conditions. As the weather
changes, these companies would like to run continuous
queries that notify them when specific grids may soon
be short of power [5]. In addition, supply chain man-
agement applications may require continuous queries
involving predictive models, especially with real-time
inventory information that RFID tags will soon pro-
vide [10].

Although many of these applications can be ex-
pressed as continuous queries, current continuous
query engines are of little help in minimizing expensive
function calls. Most continuous query engines focus on
the problems of high data rates or large data volumes
(e.g. [11, 12, 13]). In most database literature that
addresses expensive functions, the systems memoize
function results?. If a system encounters a function
call that has been run before, it can evaluate the func-
tion by simply consulting its cache. If the function in-
puts come from streams with fields in the real domain,
however, the inputs may change rapidly, and the sys-
tem may not encounter cache hits often. In our bond
trading application, for example, economic data such
as the interest rate changes by small amounts many
times during the day. If a system does not often en-
counter the exact same stream values more than once,
memoization by itself is not useful.

The problem with these caches is that they have no
information about the function other than the cached
values. Thus, these caches cannot form ranges around
the inputs of cached values where anything about the
function value is known. For a large class of real-valued
functions, however, we can often obtain information on
how a function result varies with an input value. For
such functions, we can use Taylor approximations to
find upper and lower bounds on the function result for
stream input values other those that are cached [2].

To this end, we present a system that uses Taylor
approximations to reduce the number of real-valued
function calls made in a continuous query. Specifically,
the system optimizes predicates in a query that contain
real-valued functions with one stream field as input.
In these predicates, the system uses Taylor approxi-
mations to compute a stream input range for which
each potential query result either satisfies or does not
satisfy the predicate. If the stream input values fall
within these ranges, the system can output exact re-
sults for queries such as Q1 and Q2 without running
functions each time the stream changes.

If functions are as expensive as the model in [9], a
cluster is likely needed to compute these values. At
many times, cycles may become available on these
clusters. In finance, for example, the system does not
have to process new interest rates or run any functions
when markets are closed. If cycles become available

2See [17] and Section 12.1 of the survey [16] for a discussion
of memoization in databases.

on a cluster, the system can compute more functions
to expand the ranges. With larger ranges, the future
stream values are more likely to fall inside these ranges.
The system schedules these function calls according to
a heuristic that tries to minimize the number of future
function calls that the system will have to make in real-
time to evaluate the predicates. We currently have a
working prototype that runs bond trading queries with
real bond data, interest rates, and bond models. Our
experiments show that the prototype requires signifi-
cantly fewer online function calls than a system that
only memoizes results.

2 General Approach

In this paper, we use queries Q1 and Q2 as running
examples throughout. Consider the function model in
Q1 and Q2. Assume model is any function that takes
only information about a bond and a real interest rate
as input, and returns a deterministic® real price (e.g.
[6, 9, 26]). Also, assume that model has a continu-
ous second derivative with respect to interest rate, and
that the system has information on how the model re-
sult varies with interest rate. In this case, the system
can use Taylor approximations to compute analytical
minimum and maximum bound functions for model at
all interest rates given one function result at a specific
rate. These bounds are deterministic and conservative.

model
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Figure 1: Plot of model(IR.rate, bd1) with Taylor Bounds

Figure 1 shows model(IR.rate,bd;) for some tu-
ple bd; € BD from Q1. The system cannot deter-
mine model(IR.rate,bd;) at any given IR.rate with-
out an expensive function call. Suppose the system
computes a result for model (ir;,i.rate, bdy). The sys-
tem can use this result with Taylor approximations to
compute analytical minimum and maximum bounds
on model(IR.rate,bd;) for all IR.rate. These bounds
are shown in Figure 1: maz-model(IR.rate,bd;)
is the upper parabola, and min-model(IR.rate,bd,)
is the lower parabola. Intuitively, these two
functions use information on how model varies
with IR.rate to determine a conservative bound on
how much model can change as IR.rate moves away
from ir;,;.rate. Therefore, the system knows with
certainty that the result of model(IR.rate,bd;) at

3Some bond models are stochastic, but we deal with only
deterministic ones here.



any IR.rate is between min-model(IR.rate,bd;) and
maz-model (I R.rate,bdy). Section 3 describes in de-
tail the computation of functions such as min-model
and maz-model, which we call Taylor bounds for model.

Suppose the system is running a continuous query
with a selection predicate that includes a real-
valued function. Assume this function has one real-
valued stream input and meets the above continu-
ity conditions. An example of such a predicate is
model(BD,IR.rate) > C in Q1. Figure 1 shows C
as a horizontal line. In this figure, the system knows
that model(bdi,IR.rate) > C for all IR.rate in the
range (rater,,rater) because min-model(IR.rate, bd)
> C in this range. As long as IR.rate values stay in-
side (rater,rater) and bd; does not change, the sys-
tem does not need to compute a function with bd; to
evaluate the predicate.
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Figure 2: Plot of model(IR.rate, bp1) and model(IR.rate, bm)
with Taylor Bounds

The system can also find stream value ranges for
queries with join predicates that include similar real-
valued functions. In Q2, for example, assume that
there exist tuples bm; € BM and and bp; € BP
such that Q2 needs to evaluate model(IR.rate,bm,)
> model(IR.rate, bp;). Figure 2 shows a plot
of model(IR.rate,bp;), model(IR.rate,bmy), and
their Taylor bounds computed with function re-
sults at ir;,;. The system knows that bmgq,bpy
satisfies the join predicate for the range where
min-model(IR.rate,bm1) > maz-model(IR.rate, bp1).

In addition to ranges where predicates are satisfied,
the system finds ranges where predicates are not sat-
isfied in a similar manner. In some cases, the system
may not be able to find or expand a range. The system
has provisions for handling these cases gracefully. As
long as the stream values stay in the computed ranges,
the system can return exact answers to queries such
as Q1 and Q2 without running a single function. If
some ranges do not contain the corresponding stream
values, the system quickly finds these ranges and at-
tempts to run the appropriate functions in real-time.
If this is not possible, the system notifies the user of

the potential query results that could not be evaluated.
Our system currently supports continuous queries with
real-valued functions in both simple selection and join
predicates.

As mentioned in Section 1, the system may run
functions on a cluster, which may have spare cy-
cles at certain times of the day (e.g. non-market
hours for financial systems). When compute cycles be-
come available, then our system can iteratively com-
pute more functions to expand these ranges. In or-
der to expand a range, our system computes a new
range and merges it to an existing range. Given a
range (rater,,rater) in Q1 for which the system knows
f(IR.rate,bpy) > C, the system forms a new range by
solving at model(rater,, bdy) or model(rategr, bdy), and
computing new Taylor bounds. If this range intersects
(rater,,raterr), the system merges the ranges. The
system expands ranges for join predicates in a similar
manner. The system has an efficient scheduler that
attempts to minimize the number of future real-time
function calls needed by intelligently choosing ranges
to expand.

Section 3 describes our system in detail. To sim-
plify our discussion, we first discuss our system in the
context of a query with one selection predicate involv-
ing a real-valued function. In Section 4, we present
the extensions needed to handle join predicates. Sec-
tion 5 presents related work, and Section 6 concludes
the paper.

3 Simple Selection Queries
3.1 Simple Selection Specification

This section explains the processing of a single contin-
uous query such as Q1 that has one selection predi-
cate involving a real-valued function. The system op-
timizes predicates with functions that take one real
value from one input stream, and have a continuous
second derivative with respect to this input. As in
Q1, the predicate with the real-valued function can be
in a boolean combination with other predicates that
involve only relations. Relation tuples are allowed to
change in our system. If a relation tuple is updated,
however, ranges involving the updated tuple have to
be recomputed. For the rest of this section, we assume
that relation tuples are constant to simplify our ex-
planation. Throughout this section, we explain these
queries using Q1 as a running example. In this exam-
ple, we assume that IR.rate has minimum and maxi-
mum possible values of RATE_MIN and RATE_MAX|
respectively.

3.2 Range Computation

When the system begins processing Q1, it must find
initial ranges for all tuples that must be evaluated
by the selection predicate with the real-valued func-
tion. For this predicate, the system creates a set relset,
which contains the combinations of tuples that must
be evaluated by the predicate. relset is a subset of
the cross product of the relations involved in the



predicate. In the case of QI, the only relation
in model(BD,IR.rate) > C is BD, so relset is a set of
BD tuples. In Q1, these are the BD tuples such that
BD.maturity = 30yr and BD.numHeld > 0. The calcu-
lation of relset from predicates containing only ranges
requires straightforward static query processing, and
is not discussed further here. For each bd € relset in
Q1, the system computes ranges for IR.rate in which
it knows the value of model(bd,IR.rate) > C.

In order to compute these ranges, the system must
compute Taylor approximations. To do this, the sys-
tem has to evaluate the function for each tuple in relset
with an initial stream value. In Q1, we assume the
interest rate stream only has one valid interest rate
at any one time. That is, a new interest rate tu-
ple invalidates the current one®. Let the interest
rate tuple at the time the system begins running Q1
be iri,i:. For each bd € relset in Q1, the system
evaluates model (ir;n;;.rate, bd). It also computes the
first derivatives of model with respect to IR.rate at
iTinit-rate ( 6‘}3"{:‘:;6 (irinit-rate, bd)). In addition, we
assume the system can compute a range for the sec-
ond derivative for bd for all IR.rate, &pq. For continu-
ous real-valued functions, first and second derivatives
can always be estimated using finite differencing with
at most one or two extra model calls [2]. Also, a con-
servative bound on the second derivative is often easy
to obtain for some functions, as we show in Section 3.5.

Given this information, Taylor’s theorem
states that model(IR.rate,bd) for any IR.rate

is estimated by model (ir;ni-rate, bd)  +
6‘;’;?:!:;6 (irinit-rate, bd)(IR.rate — iryy.rate) with

a conservative error bound of 1(&a)(IR.rate —
irinit-rate)®  [2). Thus, min-model(IR.rate,bd)
and maz-model(IR.rate,bd) in Figure 3 yield a conser-
vative bound on the function model(IR.rate, bd) for
all IR.rate.

Given that many of these expensive functions use
numerical techniques to begin with, the system must
accommodate error in either model(irini.rate, bd) or
% (irinst-rate, bd). If the estimate for either value
has significant deterministic error, then the system
uses the lower error bound for these values in min-
model and the upper error bounds for them in maz-
model. &pq encapsulates any second derivative error
because it is a conservative range. In the bond model
used in our experiments, error is not large enough to
affect performance. The rest of the paper does not dis-
cuss error, except where its presence affects the pro-
cessing.

Figure 1 in Section 2 plots a sam-
ple function, model (I R.rate, bd;), as
well as maz-model (IR.rate, bdy) and

min-model(IR.rate,bd1). As described in Section 2,
the system knows that model(IR.rate,bdy) > C
for all TR.rate : rater, < IR.rate < rateg because
min-model(IR.rate,bdy) > C between rater and

4The processing of streams with multiple tuples at any one
time is a straightforward extension of the description in this
section, unless otherwise noted.

rater. The system computes rater and raterm by
solving min-model(IR.rate,bd;) — C = 0 for IR.rate.
Since min-model(IR.rate,bd;) is quadratic with
respect to IR.rate, the system can easily solve this
equation using the quadratic formula. Of course,
there may be less than two solutions to this equation,
which would mean that model(IR.rate,bd;) never
crosses C on at least one side of ir;,;;.rate. If there is
no solution less than or greater than ir;,;.rate, then
the rate range for which model(IR.rate,bd;) > C has
an endpoint of either MIN_RATE or MAX RATE,
respectively.

If model(irni.rate, bdy) were less than C, the sys-
tem would simply solve maz-model(IR.rate,bd;) —
C = 0 to find a range where model(IR.rate,bd;) >
C is not satisfied. The system processes queries
with other selection operators similarly. In some
cases, the system may not be able to find a range
for bd; at irsni-rate. These cases occur when a)
model (ir;pi-rate, bdy) = C, b) model(ir;ni.rate, bdy)
has error bounds that include C, or c¢) the com-
puted range is narrower than some user-defined tol-
erance (call it MIN_RNG)®. In these cases, the system
forms an uncertain range centered around ir;,;;.rate
with width MIN_RNG. An uncertain range indicates
a range where the system does not know whether or
not the predicate is satisfied. If an IR.rate value falls
within an uncertain range for bd;, the system must
execute model at the new IR.rate to answer the pred-
icate.

After finding (rater,ratem) pairs for each bd
€ relset, the system represents each range as
a (rater,ratem,isSat,bd) tuple, where isSat =
{true,false,uncertain} depending on if the predicate is
satisfied, not satisfied, or uncertain, respectively, in
(rater,rater). With only one IR tuple in the stream
at any time, all initial (rater,ratem) ranges are com-
puted with the same rate, and each range surrounds
this rate.

To speed query processing, the system builds sep-
arate interval indexes (see [22]) on the tuples where
isSat = true and isSat = uncertain. Call these in-
dexes the satisfied and uncertain range indexes, re-
spectively. When a new IR tuple ir,,,, enters the sys-
tem, the system probes the satisfied range index with
iTnew-rate to find all ranges where (rater,,rateg) con-
tains ir,eq-rate. These ranges represent the bd tuples
that satisfy the predicate for ir,e,. The system then
probes the uncertain range index with ir,,c,.rate in a
similar manner to find any bd tuples for which it needs
to run model functions in real-time. If the system
does not have the compute cycles to run all needed
functions, it notifies the user of the bd tuples that it
cannot evaluate at iry,qy.rate.

If ir,e, has a rate that does not fall in a

5We found that for very small ranges, there was signifi-
cant roundoff error when we calculated the endpoints. We set
MIN_RNG = .0005 % in our experiments. This value is half the
.001 % granularity that interest rates are reported at, and ap-
proximately 11 orders of magnitude greater than the precision
of a double floating point number [2].
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Figure 3: Taylor Bounds on model(IR.rate,bd)

(rater,,rater) range for some BD tuple bd € relset,
the system again either runs the function in real-time
or notifies the user that it cannot evaluate ir ¢, bd in
the predicate. To detect such potential results quickly,
the system uses data structures that we introduce in
Section 3.4.

3.3 Range Expansion

As time passes, more cycles in a system may become
available for computing functions, and the current IR
tuple likely changes. If the rate field of the current IR
tuple falls outside of the range or falls in the uncertain
range for some tuple bd € relset, the system uses these
cycles to compute another range for bd. Otherwise, the
system uses the compute cycles to efficiently expand
the ranges that are not uncertain so that these ranges
are more likely to contain future IR.rate values. The
expansion algorithm handles uncertain ranges grace-
fully by only expanding them when necessary and ac-
tually shrinking them when possible.

First, we describe the expansion algorithm for nor-
mal ranges, or those ranges that are not uncer-
tain.  Fortunately, the nature of Taylor’s The-
orem allows the system to easily expand normal
ranges. As shown in Figure 1, min-model and maz-
model provide conservative bounds on model, and
the bounds get more conservative as IR.rate moves
away from ir;,;.rate. For a given range tu-
ple, the system can get more accurate (and there-
fore wider) bounds by solving model(rater,,bd) and
model(rategr,bd) along with their derivatives, and
computing ranges around each of them. To obtain
a larger value for ratep, the system computes a range
(ratel,,rate’y) as described in Section 3.2, except it
substitutes model(ratem, bd) for model (ir;nt -rate, bd),
6‘;"1?;1;; (rateg,bd) for 5‘;mf’rd(fje (irinit-rate, bd), and
rateg for ir;,;.rate. Since the ranges are conservative
bounds, the ratey field in the tuple can be replaced
with the larger rate’y. The system obtains lower val-
ues for the rater, field in a similar manner. Since ex-
panding an (rater,, rater) range on one side requires a
different function value and derivative than the other,
the system can expand each side independently of the
other.

Expansion of ranges in this manner works well
as long as a (rater,ratey) range for some bd
€ relset does not approach an IR.rate where
model(IR.rate,bd) = C. Consider Figure 1, where
ratec, is defined such that model(ratecy,bd;) = C.
Note that the distance between ratey and rate.,

is less than the distance between ir;,;;.rate and
rate.,. Thus, as ratey approaches rate.,, there ex-
ists a smaller amount that ratey can grow such that
model(IR.rate,bd,) > C is still true for all TR.rate :
rate, < IR.rate < ratey. After enough expansions
of ratey, subsequent expansions will be small enough
that they are essentially useless. If the system expands
rateg for bdy and rateg grows by less than RNG_MIN,
the system creates a new adjacent uncertain range
(rater,u,ratey,y) for bdy such that rater, y = ratey
and rateg,y = rateg + RNG_MIN. Creating an un-
certain range is the only way the system has of ex-
panding the range past rate.,, and we describe this
expansion below.

Given the conditions for the formation of an uncer-
tain range, an uncertain range for tuple bd; in Figure
1 either contains or is near an IR.rate such as ratec,
where the function crosses C. Note that in Figure 1, it
appears as though a significantly large range could be
formed to the right of rate., where the predicate is not
satisfied. Thus, the system’s goal in expanding uncer-
tain ranges should be to expand uncertain ranges only
until the system can form an adjacent normal range.
In the algorithm described below, the uncertain range
expansion algorithm often actually shrinks ranges.

Consider the uncertain range (rateru,ratem,u)
computed above for bd; that is adjacent to
(rater,,ratem). When the system attempts
to compute a range past ratem,y, it expands
rateg,y to the right. Before doing so, how-

ever, it computes model(ratem,y,bd;) as well as

6‘;”&?;1;;6 (ratem,u,bd), and tries to compute a new

normal range (ratel,rately) around ratem . If the
system succeeds in computing a new range with
width greater than RNG_MIN, then the system sets
this range adjacent to (ratery,ratem,y) by setting
ratem,u to ratel. Since rate; < ratem,y, the system
can actually shrink uncertain ranges.

If the system cannot find a range (ratel,rately)
with width greater than RNG_MIN, then it has no
other choice but to expand the uncertain range. Since
the system assumes no information about the predi-
cate in uncertain ranges, it can increase ratem,;y by
any amount and the uncertain range is still correct.
The current prototype uses the following multiplica-
tive increase scheme: for the ith expansion of a given
ratem,u, set rater,y to ratepg,y + tRNG_MIN. Be-
fore each subsequent expansion, the system attempts
to form a new normal range around ratem,y as de-
scribed above.
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Figure 4: model(IR.rate,bd;) with 3 Ranges

Figure 4 shows what ranges might look like for bd;
after multiple expansions to the right. If the sys-
tem starts with (rater,ratem) and finds that rategy
grows less than RNG_MIN, it creates an adjacent un-
certain range (rater y,ratemy,y). After zero or more
expansions of rate v, the system finds a normal range
(rate’, rate’y) which is larger than RNG_MIN. In this
case, it sets rateg,y to mte'L so that the ranges are
adjacent. In our experiments, uncertain ranges often
arise, but the system is able to shrink them to a point
such that they are generally smaller than the granu-
larity of the interest rate stream. Thus, they do not
cause any real-time function calls in our experiments.

Given this algorithm, one may wonder why the
system does not find rate., more quickly by solving
model(IR.rate,bd;) = C for IR.rate using an itera-
tive method such as Newton’s method [2]. If the sys-
tem can quickly find rate., within some error toler-
ance, the system could easily form the ranges in Fig-
ure 4. If model(IR.rate,bd;) = C at more than one
IR.rate, however, many solvers are only guaranteed
to find one of these solutions without more informa-
tion. Thus, the solvers may not return the closest
solution to the range that the system is trying to ex-
pand. Also, solvers such as Newton’s method require
multiple calls to model that may not help expand the
ranges. For instance, solving model (I R.rate,bd,) = C
with Newton’s method and initial guess ratemy could
require multiple model calls with bd; and an IR.rate
> rateq,. If the system is trying to expand the range
(rater,,ratem), these calls are of no help.

3.4 Computation Scheduling

As new compute cycles become available, the system
must determine a schedule for either expanding ranges
or creating new ranges for Q1. To do this, the system
builds a set of ValidRanges for each bd € relset. A
ValidRange for bd (we denote the ith ValidRange for
bd by vr;pq) contains a set of adjacent ranges com-
puted for bd. For example, the three ranges in Figure 4
compose a ValidRange for bd;. The ValidRange keeps
track of which ranges are uncertain and which are nor-
mal. The low and high endpoints of a ValidRange (de-
noted vr; pq.L and vr;pq.H for ValidRange vr; pq) are
the low end of the lowest range and the high end of the
highest range, respectively. Expanding a ValidRange
is equivalent to expanding one of the ranges on either

end of a ValidRange. With Q1, the system begins with
one range per bd as described in Section 3.2, so the sys-
tem begins with one ValidRange per bd. When a new
range is computed for a tuple bd because an IR.rate
value falls outside of its ValidRange, the system needs
to keep more than one ValidRange for bd.

Given all the ValidRanges for each bd € relset, the
system needs a means to schedule computations for
different bd € relset. The system attempts to sched-
ule computations so that the number of future function
calls needed in real-time is minimized. However, the
system does not know how much each ValidRange will
expand given more computation, nor does it have in-
formation on future values of IR.rate. Thus, it cannot
find a theoretical optimal schedule. Instead, it sched-
ules on the heuristic presented below.

The following description of the heuristic works for
streams which contain only one tuple at a time, such
as an interest rate stream. The heuristic can be gen-
eralized to more complex streams, but we defer this
more lengthy description to the appendix at the end
of this technical report. The heuristic is greedy, mean-
ing that the system invokes the scheduler to choose a
function to compute every time the system has the
resources to compute another function. Assume the
current rate is ircyr.rate. The system keeps two pri-
ority queues, each of which hold one ValidRange per
bd € relset. The ValidRange for a tuple bd in each
queue is the ValidRange for bd that is either closest
to or contains irgy,.rate. When the system begins
processing Q1, there is only one ValidRange per bd
€ relset, so each queue contains the only ValidRange
for each bd € relset. One of the queues is sorted by the
ValidRange low endpoints in descending order, and the
other by the ValidRange high endpoints in ascending
order. Call the ValidRanges at the top of these queues
Uy bd, and vry pq,, respectively. When the scheduler
is invoked, it runs the following algorithm:

1. If ircur.rate — vrs pay . L < vTs pdy . H — ircyr.rate, de-
queue vripa;; else, dequeue vr«pay. Set vy pd,.,
equal to the ValidRange dequeued.

2. Ifurspd,,, contains ircyr.rate, expand vripd,,, in the
direction of the endpoint that is closest to ircyr.rate;
else,

(a) Compute model(ircyr.rate,bdgeq) and

smodel (;
TR (ircur.rate, bdgeq)

(b) Compute a new ValidRange using these results,
and set UTsbdgeq equal to this ValidRange

3. Ifurypq 10, iDtersects any other ValidRanges for bd e,
merge these ValidRanges into vr. pag,,-

4. Insert vr.pd,,, OL the queue from which the scheduler
dequeued the ValidRange in step 1.

The example in Figure 5 both illustrates the sched-
uler and shows the intuition behind the heuristic. As-
sume three tuples in relset: bd;, bds, and bds. Also
assume that the 5 ValidRanges in Figure 5 exist. With
ireyr-rate as shown in Figure 5, vrq pq,, VT1,pd,, and
vr1,pd; are on the queues. When the scheduler runs,
UT1pdy 18 UTwpdy and vripd, IS Urspdy. Note that



vr1,pq, and vry pg, denote the two ranges that contain
ireur-rate but have the closest low and high endpoints,
respectively, to ir.y.rate. Thus, the system expands
the ValidRange with the closest endpoint to irc,,.rate,
which is UT'1,bdy

® ir . rate

}—{ Vg,

}—{ vr
2,bd3

IR.rate

Figure 5: Example ValidRanges

Such a scheduler is efficient under the assumption
that IR.rate is approzimately continuous. That is, two
consecutive values of IR.rate are somewhat close to
each other, rather than exhibiting large jumps in value
on a regular basis. With the exception of relatively
rare market shocks, many financial processes such as
interest rates follow this pattern [14]. If IR.rate is ap-
proximately continuous, then IR.rate is likely to move
outside of vry pq, Or vry pq, before it moves outside of
Ur1,pds. Thus, expanding either vrypq, or vrypq, is
likely the best option for minimizing future real-time
computation. Now, suppose that vri pq, and vry pa,
do not exist; consequently, vrs pq, and vrspg, are on
the queues instead of vry pq, and vry pq,. In this case,
Uy bdy, 18 NOW VT2 pdy, VT bdy 1S NOW VT2 p4,, and the
system computes a new ValidRange for vrs q4,. Again,
the system is making a good choice; vry pq, is further
from ir.,,.rate than the closest ValidRange for any
other bd tuple. If IR.rate is approximately continu-
ous, such computation should often reduce real-time
computation and cache misses.

This system works well as long as the ValidRange
on the queues for each tuple bd is the ValidRange
for bd that is either closest to or contains the cur-
rent IR.rate. Occasionally, a new IR tuple (call it
iTnew) has a rate such that a ValidRange for some bd
not on a queue now either contains ir,¢,.rate or is
closer to ir,ey-rate than the current ValidRange on
a queue. To handle these cases, the system updates
the queues in a lazy manner. Before the system in-
vokes the scheduler, the system scans all ValidRanges
with the bdy or bdy tuples before processing. If the
system finds another ValidRange for either tuple that
should go on the queue instead, it dequeues the appro-
priate ValidRange, enqueues the ValidRange found,
and makes this scan again with the tuples from the
ValidRanges now at the top of the queues. Only when
the system scan finds that the ValidRanges at the top
of the queues do belong there does it start the above

scheduling algorithm.

Since this scheduler runs every time the system has
resources to compute another function, it must run ef-
ficiently. Using heaps for the queues, the ValidRange
enqueue and dequeue each require a number of op-
erations that is logarithmic on the queue size [8].
The queues also provide an efficient data structure for
finding bd tuples without a ValidRange that contains
the current IR.rate. The system finds these tuples
by walking each queue from the top and finding all
ValidRanges until it finds a ValidRange that contains
IR.rate. In heaps, This walk can be performed with
an in-order traversal which requires operations linear
on the number of ValidRanges returned [8].

3.5 Performance

To evaluate the performance of our system, we ran a
prototype with a query similar to Q1, using real data
and bond models. In these experiments, we show that
a) our system requires significantly fewer function calls
than a system using only memoization, and b) our
system still performs well in experiments designed to
stress our system.

The query we run is identical to Q1, except it runs
the predicate model(BD,IR.rate) > C on the entire BD
relation. In our experiments, BD is a table consist-
ing of 1668 Freddie Mac Gold PC 30-year mortgage-
backed securities issued between January and Decem-
ber of 1993 . IR is a stream describing the 10-Year
Constant Maturity U.S. Treasury yield, with rate be-
ing the yield itself [15].

Unfortunately, we were only able to find a stream
of Treasury yields at the granularity of a day. This did
not allow us to test how our system reacts to intraday
changes in the market. To simulate intraday changes,
we used a Brownian bridge to construct a random path
of yields between the yields for two consecutive days
given a certain interest rate wvolatility. Details on im-
plementing Brownian Bridges for financial processes
can be found in [19]. We use a volatility for interest
rates that reflect real market conditions as a default
from [9], but we also vary this parameter in our exper-
iments. The experiments here use interest rate data
from January 3 to January 31, 1994, generating an in-
traday interest rate for every minute of market time.
In keeping with the convention of most financial data
providers (e.g. [7]), interest rates are reported at the
granularity of .001 %. Many models used exhibits high
error at high interest rates or interest rates near 0, so
we set MIN_RATE to 0.5% and MAX_RATE to 100%.
In the recorded history of the 10-year Treasury yield
from 1800, the yield never leaves this range [15].

Although we have pointed out examples of expen-
sive bond models [9, 26], these models proved too ex-
pensive for our simulations. For instance, pricing one
bond and derivative at a $.01 error with the model
in [26] requires work which took a minimum of over
26 minutes on a Pentium 4 2.4 Ghz PC with 1.2 GB

6We are greatly indebted to Nancy Wallace at U.C. Berke-
ley’s Haas School of Business for helping us to obtain this data.



of RAM. Although this model can be parallelized, we
did not have a dedicated cluster to run large num-
bers of experiments for long periods of time. There-
fore, we used a much cheaper model based on the Cox-
Ingersoll-Ross interest rate model [6]. For each bond,
the model outputs a first derivative and correspond-
ing error by using finite differencing. For this model,
we know a priori that the second derivative always de-
creases with interest rate. Thus, we can get a second
derivative range &4 for each bond tuple bd by deter-
mining the second derivative via finite differencing at
MIN_RATE and MAX_RATE. Since the ranges should
be conservative, we widen each range on both sides by
10 times the estimated error from the finite difference
method. We use these ranges as a default, but vary
them in some of our experiments.

The prototype and experiment code was written in
C++. All experiments were run on a Pentium 4 2.4
GHz PC with 1.2 GB of RAM running RedHat Linux
7.3. In all experiments presented here, the system be-
gins with values and derivatives for all bonds at the
last interest rate before the first day of the experiment
data (Dec. 31, 1993). The system then processes the
interest rate stream, and is allowed a limited number
of calls per day (numCallsPerDay) to expand or com-
pute new ranges. We assume an 8 hour market day,
so for 8 hours of simulated time the system processes
one interest rate per minute and is allowed % num-
CallsPerDay, equally spaced out over the day. Af-
ter the simulated market closes, the system can use
the remainder of numCallsPerDay to create or expand
ranges. All experiments report %CallsNeeded, the cu-
mulative percentage of functions at each interest rate
where the system failed in evaluating a predicate with
the function. This occurs when the system a) could
not use its ranges to evaluate the predicate, and b)
did not did not have the resources to run the function
in real-time.

Before starting our performance study, we ran tests
to calibrate the selection predicate constant C. In these
tests, we set C to different quantiles of the initial bond
values. Setting C to be the median of all initial bond
values yields the highest %CallsNeeded. As Section 3.3
explains, when model (ir.,.rate, bd) is close to C, very
little benefit occurs from range expansion for bd. With
C set to the median of the bond values, the most bonds
have ranges that expand slowly. For all experiments,
we set C to be the median of all initial bond values.

Range Caching | Only Memoization
1092 [ 2401930

Table 1: criticalNumCallsPerDay for Systems Using Range
Caching and Only Memoization

In our first set of experiments, we determine
the numCallsPerDay needed to evaluate all predi-
cates in the query with our data. These experi-
ments report critical NumCallsPerDay, which is the
smallest numCallsPerDay where %CallsNeeded = 0
and the system can evaluate all predicates. Since

%CallsNeeded varies inversely with numCallsPerDay,
we can find critical NumCallsPerDay using an itera-
tive solver based on bisection method with an error of
2 numCallsPerDay [2].

The results are shown in Table 1 for both our system
(Range Caching) and an engine using only memoiza-
tion. Note that critical NumCallsPerDay is three or-
ders of magnitude larger for a system with only mem-
oization than for our system. The system with only
memoization exhibits such poor performance because
it uses cached function values only if it encounters the
exact interest rate more than once. In an environment
where the interest rate is moving frequently by small
amounts, memoization alone is of little help.

Given that we are using real market data, these ex-
periments are likely indicative of how much compute
power each system would need to run this application
in the current market. Thus, a system with memo-
ization could not support this query if models are as
expensive as [26]. On the other hand, our system ex-
hibits a more reasonable critical NumCallsPerDay, and
probably can support this application with a reason-
ably sized cluster running the functions.

vol 900-Ra 1800-Ra 2700-Ra 2700-Me
Mult

1 .00001 .00000 .00000 .95296
2.5 .00063 .00009 .00000 96437

5 .00233 .00111 .00050 .98090
10 .00496 .00291 .00163 .98941
15 .00755 .00429 .00277 .99191
20 .01029 .00556 .00391 .99323

Table 2: %CalisNeeded vs. volMult

In the following experiments, we vary experiment
parameters that cause more stress for our system. Ta-
ble 2 shows %CallsNeeded for various interest rate
volatilities for 900, 1800, and 2700 function calls per
day (900-Ra,1800-Ra, and 2700-Ra resp.). Volatility
is measured by volMult, the multiple of the default
volatility discussed earlier. Although the volatility
where volMult = 1 was determined in [9] to reflect
real market conditions, increasing the volatility gives
us the opportunity to make the interest rate less con-
tinuous. An increase in volatility should result in less
effective scheduling and thus the need to compute more
real-time function calls. As a baseline, we compare our
results against %CallsNeeded for an engine using only
memoization with 2700 calls (2700-Me).

First, note that the 2700-Me still performs much
worse than even the 900-Ra experiment at any volatil-
ity. At lower volatilities, our system evaluates most
or all predicates, and the range of volatilities with all
predicates evaluated grows as the number of functions
computed per day rises. At higher volatilities, %Call-
sNeeded is still low, especially for larger numCallsPer-
Day.

In addition to varying volatility, we also ran exper-
iments where we instead varied the size of each &g
range for each bond bd. Increasing this range should



make the min-model and maz-model parabolas shown
in Figure 1 thinner, which results in smaller ranges.
In these experiments, we multiply the upper bound of
each &4 by ziMult and the lower bound by —ziMult’.
The results show that the system is only marginally
sensitive to the sizes of each &g for ziMult from 1 to
100, and thus we do not show the data here.

3.5.1 Performance Summary

From our experiments, We draw two conclusions.
First, a system with memoization likely requires too
many function calls to run our bond trading selec-
tion query under real market conditions if functions
are even moderately expensive. However, our system
requires a small enough number of function calls that
the system can probably run the query given reason-
able compute resources. Second, our system degrades
gracefully when we vary parameters that should stress
the system, and it still drastically outperforms a sys-
tem with only memoization.

4 Simple Join

In this section, we extend the description from the
last section to accommodate similar queries with a
join predicate involving real-valued functions. To do
this, we use Q2 from Section 1 as a running exam-
ple. Q2 only has one predicate with real-valued func-
tions, model(BM,IR.rate) > model(BP,IR.rate). The
techniques used to process Q2 can support any query
with one join predicate which involves at least one real-
valued function. The functions do not need to be the
same, so long as they satisfy the conditions described
in Section 3 and take the same real-valued stream in-
put.

Section 4.1 explains the basic processing for joins as
a straightforward extension of the processing discussed
in Section 3. Section 4.2 discusses an optimization on
this basic processing, and Section 4.3 presents perfor-
mance experiments.

4.1 Range Computation, Expansion, and

Scheduling

In many ways, the processing of join predicates is sim-
ilar to the processing of selection predicates. When
the system starts running Q2, it computes a set relset
which contains pairs of tuples from the set BM X
BD that satisfy the other predicates in the query.
For each bm, bd tuple in relset, the system then com-
putes IR.rate ranges where the predicate is satisfied,
not satisfied, or uncertain. The system uses these
ranges to evaluate the predicates and schedule new
computations in the same way it does in Section 3.
Join predicate processing differs with selection predi-
cate processing only in the computation and expansion
of ranges.

"Since actual second derivative ranges are always positive,
we multiply the low ends by a negative number to expand the
range.

Suppose the system starts running Q2 with an
initial IR tuple ir;n;- In this case, The system
computes model and its derivative at ir;,;;.rate for
each bm and bp in a relset pair. With this data,
the system computes Taylor bounds for each bm and
bp. Figure 2 in Section 2 plots two sample func-
tions model(IR.rate,bm,) and model(IR.rate,bp;),
as well as the corresponding Taylor bounds func-
tions, evaluated at irj,;.rate. The system knows
that model(IR.rate,bmy) > model(IR.rate,bp:)
for the IR.rate range (rater,rater), where
min-model(IR.rate,bmy) > maz-model(IR.rate, bpy).
The system finds rater and rateg by solving
min-model(IR.rate,bm,) — maz-model(IR.rate,bp;)
= 0. If  model(irinit-rate, bm;) and
model (irinit-rate,bpy) were a) equal, b) within
one another’s error bounds, or c¢) used to compute
a range of width less than RNG_MIN, the system
would create an uncertain range around 7, .rate
with width RNG_MIN.

After initialization, the system can expand normal
ranges for bm,bp pairs in relset by computing a new
range and merging it with an existing range, similar to
the description in Section 3.3 The system also expands
uncertain ranges as described in Section 3.3, with the
system attempting to form an adjacent normal range
before each expansion. Just as Section 3.3 showed
expansions creating a small uncertain range around
rate.q where model(rateeq,bdi = C, the system ex-
pands ranges so that it creates an uncertain range
around I R.rate values where model (I R.rate, bm;) and
model (I R.rate, bpy) cross.

When computing new ranges after initialization, the
system may avoid calling functions by using cached
computed function values. For example, suppose the
system needs to compute a range for bmg,bp; at
ratene, some time after the ranges are initialized.
Since initialization, the system may have computed
model for bmy and bp, at different rates when comput-
ing or expanding other ranges involving bm; and bp;.
When the system performs model computations, it
memoizes the function results and derivatives. When
the system has to compute a new range for bmq, bp;
at rateney, it finds cache entries for bm; and bp, that
have the closest rate to ratene,. The system uses
these cached values to compute Taylor bounds, and
attempts to compute a range. Since the cached values
may have been computed at different times, however,
either cached rate value may be different than rate,,e,, .
Because of these potential inequalities, the computa-
tion of ranges is slightly different.

Let ratecpm, and rate.p,, be rates closest
to ratene, where the system has cached model
and derivative values for bm; and bp;, respec-
tively. Using the cached values corresponding
to ratecpm, and ratecpp,, the system com-
putes Taylor bounds for bm; and bp; as before.
Given that neither rate;pm, nor ratecpp, may be
equal to ratene,, the system has to determine if
the predicate is satisfied or not at ratejey. If
min-model(ratepew, bm1) > maz-model(ratepeqy,bp1),



the system knows the predicate is satisfied
at  ratepey- If  maz-model(ratepew,bmi) <
min-model(rateney,bp1), the system knows the
predicate is not satisfied. If neither of these inequal-
ities hold, the cached values are of no use, and the
system must compute model and its derivative at
ratene, for bmy and bp;. If one of these inequalities
holds, the system finds a range using the Taylor
bounds as described above. If the system finds a large
enough range that contains rateney, it does not have
to call model for by or bp; at ratepeq.

4.2 Tolerance Optimization

Unfortunately, algorithms in Section 4.1 do not per-
form well when the functions involving many of the
bm and bp tuples are nearly identical to one another.
Consider the case where the functions involving bm;y
and bp; are nearly identical, as shown in Figure 6.
With the current IR tuple ir;,;, the system accord-
ing to Section 4.1 attempts to compute the range
(rater,,rater). If the functions have intersecting error
bounds or subsequent expansions grow the range less
than RNG_MIN, then the system creates an uncertain
range and makes future expansions accordingly. For
nearly identical functions, uncertain range expansions
using the multiplicative scheme eventually yield ranges
that encompass both RATE_MIN and RATE_MAX.
Thus, the system must run model for almost any
IR.rate in order to answer the predicate for bmy, bp;.
Unfortunately, nearly identical bonds are common in
our data, and thus present a significant problem.

model

max-model(IR.rate,bp.)

model(IR.rate,bm,)

model(IR.rate,bp,)

min-model(IR.rate,bm,)

IR.rate

Figure 6: Plot of nearly identical model(IR.rate, bm1) and
model(IR.rate, bp1) with predicate tolerance PT and Taylor bounds

(only shows 2 bounds for clarity)

To handle this case, our system takes advantage
of the fact that many predicates only need to be
evaluated within a certain tolerance. In the bond
trading example, bond models typically output real
numbers that are rounded to the machine’s preci-
sion. As long as the query outputs the correct an-
swer within $.01 of the bond prices, however, the
traders do not care. We define a tolerance for each

predicate PT as the maximum margin by which the
system may report an incorrect answer. For in-
stance, if a query reports that model (ir;,i;.rate, bmy)
> model(iri,-rate,bpy), the user knows that
model (ir;n;-rate,bm1) — model(ir;n;-rate, bpy) >
—PT. Similarly, if it reports model(ir;n;.rate,bm;)

< model(iriy.rate,bpy), the user knows that
model (ir;p-rate,bmy) — model(irini.rate,bpy) <
PT.

With  PT  defined, the  system  only
slightly modifies its range computations. In
the example in Figure 6, the system in-
stead finds the range (rate},rate;) where
model (ir;p.rate,bmy) — model(irynic.rate, bpy) >
—PT. The system computes ratel; and
rate;, by solving min-model(iry,ic.rate,bmq) —

maz-model (ir;p;t.rate,bp1) = —PT. As shown in Fig-
ure 6, ranges are much larger than the ones computed
in Section 4.1, which means that the system is less
likely to create an uncertain range.

With PT defined, the system expands ranges as
described in Section 4.1, with one small modifica-
tion. When the system evaluates the functions at,
say, rately, it may find that model(ratey,bmi) <
model(ratey,bpr). This case can occur because the
predicate can actually now change values within a
normal range. In this case, the system just com-
putes a new normal range (ratel,ratey;) with a dif-
ferent isSat value by solving min-model(rate’y, bp,)

— maz-model(rate’y,bm;) = —PT. The system sets
this range to be adjacent to rate’y by setting rate’ to
ratel;.

Note that predicate tolerance cannot be set in a
system that only uses memoization. Since a cache of
only function values has no knowledge of derivatives or
how a function varies, it cannot put any bounds on the
input values it caches and guarantee that a predicate
is true within a certain tolerance. Such a guarantee is
important in applications like arbitrage, where price
differences of even a few cents can be critical.

4.3 Performance

To test our join algorithm, we ran our prototype on a
query similar to Q2 in the same experiments as pre-
sented in Section 3.5. The query we run is identical
to Q2, except it runs the join predicate over the en-
tire cross product of the bond data relations. We use
the same data, bond model, and simulation environ-
ment as Section 3.5, except that we need two tables
of bond data. To this end, we split the bond data
we have evenly between the two tables. With default
parameters from Section 3.5, we ran the simulated in-
terest rate streams over different bond workloads and
measured % CallsNeeded. To create each workload, we
sorted the bonds by model output at the initial in-
terest rate. While each table contains one half of the
total data set, we vary the percentage of tuples that
each table takes from the top half and the bottom half
of the list.

The results show that the highest %CallsNeeded oc-



curs when each table takes an equal number of tu-
ples from each half of the list. This workload has the
highest number of tuples in different tables with initial
function values that are close to one another, so the
ranges are smaller. Since this workload stresses our
system the most, we use it for the remainder of our
experiments.

Range Caching | Range Caching | Only Memoiza-

(80 PT) ($.01 PT) 8 tion
119353 |0 | 2401930
Table 3: criticalNumCallsPerDay for Systems Using Range

Caching and Only Memoization

In our first set of experiments, we determine crit-
icalNumCallsPerDay for this query as we did for the
selection query in Section 3.5. Table 3 shows criti-
calNumCallsPerDay for our system with $0 and $.01
predicate tolerance (PT), as well as a system using
only memoization ?. With PT = $0, our system still
outperforms an engine with only memoization, but we
see worse performance than with the selection query
in Section 3.5. This drop in performance is due to the
join predicate evaluating a large number of join pairs
with large uncertain ranges.

With PT = $.01, criticalNumCallsPerDay = 0 for
our system, which means the system can evaluate
all predicates in the experiment with only the initial
ranges it has for the bonds. This result is even bet-
ter than the critical NumCallsPerDay for the selection
query in Section 3.5 because the nonzero PT effectively
eliminates uncertain ranges at the default parameters.
Also, we set the selection constant in Section 3.5 such
that the most bonds have slowly expanding ranges at
the initial interest rate.

Given that we are using real market data, we see
that, with the correct tolerance, our system is likely to
support the join query in real market conditions. In
the future, we plan to build a predicate tolerance into
simple selections as well to see if we can reduce criti-
calNumCallsPerDay for these queries as well.

vol 900- 2700- 900- 2700- 2700-
Mult | Ra Ra Pt Pt Me

1 .0233 .0228 .0000 .0000 .9530
2.5 .0430 .0295 .0000 .0000 .9643
5 .1457 .0586 .0074 .0007 .9809
10 .3417 .1899 .1037 .0304 .9894
15 4749 .3006 .2394 .1196 19919
20 5717 .3997 .3517 .2080 19932

Table 4: %CallsNeeded vs. Volatility

8Note that the system computes initial ranges for each join
pair before the first market day of experiment begins. 0 critical-
NumCallsPerDay means that the system was able to evaluate
all predicates with these initial ranges.

9Since both the selection and join queries need to run each
bond on each interest rate, the engine using only memoization
has the same %CallsNeeded for both queries with all other in-
puts being equal. We repeat these numbers from Section 3.5 for
convenience.

For the remainder of our experiments, we vary ex-
periment parameters that cause more stress for our
system. To make the interest rate stream less contin-
uous, we run the join query with our data and differ-
ent interest rate volatilities, indicated by the volatil-
ity multiplier volMult. Table 4 shows the %Call-
sNeeded from these experiments for 900 and 2700 num-
CallsPerDay, where PT = $0 (900-Ra and 2700-Ra)
and with PT = $.01 (900-Pt and 2700-Pt). As a base-
line, we again run the join query with only memoiza-
tion at 2700 numCallsPerDay (2700-Me). As volMult
rises, %CallsNeeded rises more quickly for our system
(both Ra and Pt) than it does in the experiments for
the selection query in Section 3.5. As volMult rises,
we see more interest rates that are far from the initial
interest rate. At these interest rates, the ranges in the
selection query expand much more quickly than they
do near the initial interest rate because of the way we
set the selection constant. In the case of the join query,
the ranges do not expand more quickly. Despite this
performance drop, even the 900-Ra experiment for the
join query at volMult = 20 still outperforms the 2700-
Me experiment at wvolMult = 1. As expected, the Ra
experiments exhibit a higher %CallsNeeded than the
Pt experiment at the same numCallsPerDay and vol-
Mult.

xi 900- 2700- 900- 2700- 2700-
Mult | Ra Ra Pt Pt Me

1 .0245 .0229 .0000 .0000 .9530
5 .0728 .0289 .0000 .0000 .9530
10 11193 .0485 .0000 .0000 .9530
25 .2587 .1064 .0601 .0030 .9530
50 .4313 .1647 1622 .0276 .9530
100 .5633 .2130 .3609 .0928 .9530

Table 5: %CallsNeeded vs. ziMult

In addition to varying volatility, we also vary the
size of each second derivative range by varying the pa-
rameter ziMult as we did in Section 3.5. Table 5 shows
results with similar configurations to those in Table 4,
except we vary ziMult instead of volMult. As de-
scribed in Section 3.5, larger second derivative ranges
should result in Taylor bounds such that the system
computes smaller ranges and more uncertain ranges.
Unlike the selection query, the join query seems much
more sensitive to the second derivative range, espe-
cially where PT = $0. Larger second derivative ranges
result in Taylor bounds that compute smaller ranges.
Thus, the system creates a large number of uncertain
ranges for more bond pairs at higher ziMult. When PT
= $.01, the system creates far fewer uncertain ranges,
and the system only exhibits nonzero % CallsNeeded at
the highest xiMult values.

4.3.1 Performance Summary

We see that our system requires a small enough num-
ber of function calls such that the system can probably
run our bond trading join query in real market con-



ditions given reasonable compute resources. However,
we may need to specify a small predicate tolerance to
reduce the number of function calls. Again, the sys-
tem with only memoization likely requires too many
function calls to run this query if functions are even
somewhat expensive. In response to parameters that
stress the system, our system still outperforms the sys-
tem using only memoization. However, our system is
more sensitive to these parameters here than when it
runs a selection query. In any experiment, a small
nonzero predicate tolerance significantly reduces the
number of needed function calls.

5 Related Work

As stated before, most continuous query research [11,
12, 13] does not concentrate on expensive predicate
evaluation. Work on expensive predicate evaluation
such as [3, 21, 18] focuses on static query optimization
and either assumes that function memoization occurs
or does not mention it at all. Work in [17] focuses
on function caches within the execution of one static
query. Persistent caches store results across multiple
static queries. Section 12.1 of the survey [16] provides
a bibliography of ideas on such caching. The function
indexes in [23] provide similar functionality as memo-
ization. None of this work attempts to compute ranges
around memoized input which can be used to process
queries. Query processing over approzimate predicates
is discussed in [25], where approximate predicates are
cheaper versions of exact predicates with known false
positive and false negative probabilities. Our system
functions in situations where such predicates do not
exist.

The concept of predicate tolerance is similar to
the precision constraint in [24]. The precision con-
straint is the amount of error that a user will toler-
ate in query results. This work deals with minimizing
communication costs in aggregate continuous queries
over distributed data sources, which is a significantly
different problem than we consider here. The work
in [4] deals with probabilistic queries over streaming
data sources by representing the data sources as prob-
ability distributions. To run our queries probabilisti-
cally, we would need both a probability distribution of
the stream data as well as information on how each
function invocation transforms that distribution. Our
system assumes neither of these.

In the numerical analysis literature, there is a wide
body of work on solvers and interpolation schemes for
real-valued functions with one parameter [2]. These
techniques provide information about a function with-
out solving it at every parameter value. To our knowl-
edge, none of this work finds a range of parameter
values for a function where a predicate is satisfied.
Some work in the optimization field also deals with
real-valued functions [20], but the techniques are spe-
cific to optimization problems.

6 Conclusion

This paper deals with the problem of executing con-
tinuous queries with expensive real-valued functions
in the predicates. If a real-valued function in a pred-
icate takes a field from a stream as input, the system
may have to recompute each function every time the
stream changes. If the stream field is a real number
and changes frequently, the system may not frequently
encounter the same value twice. In this case, tradi-
tional memoization is not helpful.

To this end, we present a system that reduces the
number of function calls in continuous query predi-
cates for a large class of real-valued functions. Using
Taylor approximations for the functions, the system
computes ranges of stream inputs in which a predicate
value is known for each potential query result. If the
stream values fall in these ranges, the system does not
have to compute any functions to evaluate the pred-
icate. If the system has spare compute cycles, it can
compute more functions to incrementally expand these
ranges, thus increasing the chance that future stream
values fall in the ranges. The system schedules these
function calls using a heuristic that attempts to mini-
mize the function calls needed in real-time to evaluate
the predicates in the future.

To evaluate our system, we built a prototype and
ran experiments with bond trading queries using real
data. In these experiments, our system requires far
fewer function calls than a system using only mem-
oization. In fact, the number of calls required by a
system using only memoization likely prohibits sup-
porting our workload for even moderately expensive
functions. When we vary experiment parameters de-
signed to stress our system, our system still signifi-
cantly reduces the number of function calls needed over
a system with only memoization.
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A Appendix: Processing for More
Complex Streams

Although Sections 3 and 4 deal with continuous query
processing where streams contain one tuple at a time,
the system can easily accommodate different streams
with only slight modifications. Here, we describe the
system running the query Q1 with a significantly more
liberal definition of stream. The processing of queries
with join predicates (e.g. Q2) with such streams fol-
lows in a straightforward manner from the discussion
here. We leave the processing of even more compli-



cated streams (e.g. streams with windows) as future
work.

Instead of the definition in Section 3.1, let IR be
a stream of tuples with two fields, ¢d and rate. id is
a key on a tuple such that a stream contains at most
one tuple with a given key at any given time. When a
new tuple enters the stream, it updates all the fields of
the current tuple with the same key. Here, we assume
the set of keys is constant. For instance, a current
stock quote stream is a similar stream, where the key
is the ticker symbol. Although it is unlikely that an
interest rate stream has more than one tuple at any
given timel®, we assume here that IR has more than
one tuple so that we can use our running example of
Q1.
Since |IR| > 1 at any given time, note that
f(IR.rate, BD) > C is now basically a join predicate.
relset now contains a subset of tuple pairs from IR
X BD that satisfy all other predicates in the query.
Since all other predicates in ()1 contain only the rela-
tion BD, relset only changes if either one of the BD
tuples or one of the I R.id key values changes. If the
tuples in relset change, the system must recompute
the ranges associated with the updated tuple pairs.

First, the system needs to compute ranges for ev-
ery ir,bd pair in relset. While the system may need
a maximum of |relset| model calls, it will probably
need less because some of the ir.rate values for ir tu-
ples paired with a given bd tuple will fall into previ-
ously computed ranges. The system forms and ex-
pands these ranges as described in Section 3.2 and
Section 3.3. For each ir tuple, the system keeps an
uncertain and satisfied range index just as it does in
Section 3.2. When new tuple enters the system and
updates a tuple ir, the system probes the satisfied in-
dex for ir to find bd tuples that satisfy the predicate
with the new ir.rate. The system also probes the cor-
responding uncertain index to find bd tuples for which
the system needs to run model in real-time. The sys-
tem also uses a modified scheduler to schedule function
computations, as explained below.

Let the definition of ValidRange for each ir, bd tuple
pair be analogous to the definition of ValidRange for
each bd tuple in Section 3.4 (denote the ith ValidRange
of the ir,bd pair as vr; i pq). Let irset be the set of
ir tuples in IR that are in a relset tuple pair. In-
stead of keeping only 2 ValidRange priority queues,
the system keeps 2 queues for each ir € irset. The
queues for the tuple ir contain a ValidRange for each
tuple pair in relset that contains ir. For each ir tu-
ple, one of the queues is sorted by the ValidRange
low endpoints in descending order, and the other is
sorted by the ValidRange high endpoints in ascending
order. For a given ir, bd tuple pair, the system keeps
the ValidRange on the ir queues that either contains
or is closest to ir.rate. As in Section 3.4, the system
invokes the scheduler to choose a function computa-
tion each time new cycles become available. The new

10While there are many different measures of the interest rate,
most models that take one interest rate only use one such mea-
sure.

scheduling algorithm, shown below, is a variation on
the original algorithm that accommodates 2 queues for
each ir € irset. For this algorithm, let vr, ;- pq, be the
ValidRange at the top of the queue for the tuple ir
that is sorted by the ValidRange low endpoints. Simi-
larly, let v7« ir,pa, be the ValidRange at the top of the
queue for the tuple ir that is sorted by the ValidRange
high endpoints. When the system has compute cycles
available, the scheduler runs the following algorithm.

1. Find vr ir, b, such that irp = miniycirses (ir.rate —
VT irpdy -L). Also, find vry iy 04y such that irg =
MiNircirset (VT ir pdy -H — ir.Tate).

2. Ifirp.rate —vrs irp, pdy - L < U irg pay -H —irm.rate,
dequeue 7. ,irp bay; else, dequeue vriirybay . Set
UTsirgo,,bdge, €dual to the ValidRange dequeued.

3. If UPsirgeq,bdge, ~CONLAINS  @rgeq.rate,  expand
UTuirgeq.bdge, 10 the direction of the endpoint
that is closest to irqeq.rate; else,

(a) Compute model (irgeq.rate, bdgeq) and

Smodel (;
318 = (irdeq.rate, bdgeq)

(b) Compute a new ValidRange using these results,
and set VT, ir g, ,.bdq., €qual to this ValidRange

4. If vre deq,bdae, iDEErsects any other ValidRanges
for rgeq,bdaeq, merge these ValidRanges into
VT, irgeq bddeq

5. Insert vri irg.,bdg., OR the queue from which the
scheduler dequeued the ValidRange in step 2.

To understand the intuition behind this sched-
uler, consider the basic scheduler in Section 3.4 where
[IR| = 1 (IR = {ircyr}). If all ValidRanges in the
queues in the basic scheduler contain irg,..rate, we
showed that the scheduler expands the ValidRange
with the closest endpoint to irg...rate. If at least
one ValidRange does not contain ir.,..rate, then the
scheduler computes a new range for the ValidRange
on the queues which is furthest from ir.,,.rate.
The new scheduler exhibits similar behavior, except
ValidRanges have different ir tuples, and the scheduler
considers each ValidRange in terms of its own ir.rate
instead of the one ir.,,.rate. This heuristic works well
if a) for all ir € irset, ir.rate is approximately contin-
uous, and b) all ir.rate have the similar variances, so
that it is no more important to expand ranges around
any single ir.rate. If assumption b does not hold, then
the scheduler can compensate by using differences in
standard deviations instead of scalar distances to find
UTs irg.q,bda., iD Steps 1 and 2 above.

The system needs to ensure that the ValidRange
for a given ir, bd pair on a queue is the ValidRange for
ir, bd that either contains or is closest to ir.rate. The
system ensures this condition for each queue the same
way it does in Section 3.4. When a tuple ir is updated,
the system can find the bd tuples with no ValidRanges
that contain ir.rate by walking down the queues for
the ir tuple. As in Section 3.4, the system walks down
these queues until it finds a ValidRange that contains
ir.rate.

If |IR| is small, the scheduler above is efficient. If
|IR)| is large, the scheduler may need to keep many



more ValidRanges in queues than the scheduler de-
scribed in Section 3.4. Given the amount of research
in the area of disk-based sorting (see [1] and the ref-
erences therein), we are confident that we can design
efficient queues that spill to disk. Since our current
workloads do not require queues that spill to disk, we
leave this design as future work. The scheduler could
keep an index on the top of each of these queues to
speed the search for vr.,,, bd,.,, but the index would
have to be modified when any IR tuple is updated.
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