Semiconductor diodes suffer from non-idealities in performance, particularly non-zero forward voltage and reverse leakage current, which limit the energy efficiency of power conversion circuits. In this work, a micro-electro-mechanical (MEM) relay configured as a diode is investigated for power conversion application. Specifically, the utility of a MEM diode is demonstrated in a half-wave rectifier circuit. Due to high native pull-in voltage and high ON-state resistance, MEM relay technology requires further refinement to be promising for low-loss power conversion application.
Title
Micro-Electro-Mechanical Diode for Tunable Power Conversion
Published
2016-10-05
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2016-157
Type
Text
Extent
16 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).