We present a system for finding celebrities in videos that uses face information in conjunction with text or speech. We achieve an approximate tripling of precision for searches over the use of transcripts or speech alone. Our work is motivated by the recent growth of personal video recording devices such as TiVo, which makes watching television more like information retrieval. We use a large dataset consisting of 13.5 hours of commercial video, which presents a challenging speech and face recognition environment. Faces are extracted using a face detector and processed via kernel PCA, LDA for use in one-vs-many SVM face classifiers. We evaluate two scenarios, one where transcripts are provided and the other more difficult scenario with speech as the only language cue. Wordspotting over audio is done using an HMM and SVM combination. We demonstrate our system's improved retrieval under realistic conditions using video recorded directly from television.
Title
Finding Celebrities in Video
Published
2006-05-23
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2006-77
Type
Text
Extent
10 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).