
On the Generation of 2-Dimensional Index Workloads

Joseph M. Hellerstein, U.C. Berkeley�

Lisa Hellerstein, Polytechnic Universityy

George Kollios, Polytechnic Universityz

jmh@cs.berkeley.edu, hstein@duke.poly.edu, gkollios@db.poly.edu

Abstract

A large number of database index structures have been proposed over the last two decades, and little consensus
has emerged regarding their relative e�ectiveness. In order to empirically evaluate these indexes, it is helpful to have
methodologies for generating random queries for performance testing. In this paper we propose a natural, domain-
independent approach to the generation of random queries for experimenting with indexes: choose randomly among
all logically distinct queries.

We investigate this idea in the context of a widely-used and widely-studied indexing workload: range queries over
2-dimensional points. We present an algorithm that chooses randomly among logically distinct 2-d range queries. It has
constant-time expected performance over uniformly distributed data, and exhibited good performance in experiments
over a variety of real and synthetic data sets.

We observe nonuniformities in the way randomly chosen logical 2-d range queries are distributed over a variety of
spatial properties. This raises questions about the quality of the workloads generated from such queries. To explore
this further, we contrast our approach of choosing random logical range queries with previous work that generates
workloads of random spatial ranges. We highlight pros and cons of the alternate approaches, and sketch directions for
future work on the robust generation of workloads for studying index performance.

1 Introduction

Multidimensional indexing has been studied extensively over the last 25 years; a recent survey article [GG97] describes
over 50 alternative index structures for the two-dimensional case alone. Two-dimensional indexing problems arise
frequently, especially in popular applications such as Geographic Information Systems (GIS) and Computer Aided
Design (CAD). A frustrating aspect of the multidimensional indexing literature is that among the many proposed
techniques, there is still no \clear winner" even for two-dimensional indexing. Performance studies that accompany
new index proposals typically o�er little help, presenting confusing and sometimes con
icting results. Signi�cantly
absent from many of these studies is a crisp description of the distribution of queries that were used for testing the
index. The need for rigorous empirical performance methodologies in this domain has been noted with increasing
urgency in recent years [SRF97, GOP+97].

Recent work on generalized indexing schemes presents software and analytic frameworks for indexing that are
domain-independent, i.e., applicable to arbitrary sets of data and queries [HNP95, HKP97]. As noted in [HKP97],
there is a simple logical characterization of the space of queries supported by an index over a data set D: they form a
set S � P (D), i.e., a set of subsets of the data being indexed (here P (D) denotes the power set of D). Note that this
logical view of the query space abstracts away the semantics of the data domain and considers only the membership of
data items in queries. In particular, this de�nition makes no distinction between query speci�cations and their outputs
{ a query is de�ned by the set of items it retrieves. This abstraction leads to simpli�ed systems [HNP95], frameworks
for discussing the hardness of indexing problems [HKP97, SM98, KT98], and domain-independent methodologies for
measuring the performance of queries over indexes [KSH98].

A natural extension of this idea is to test indexes in a similarly domain-independent manner, by choosing randomly
from the space of logical queries. In particular, a random logical query is simply a randomly chosen element of the set
S � P (D) of queries supported by the index. In this paper we consider randomly generating logical queries in this
fashion for indexes that support range queries over two-dimensional points.

We begin by presenting a simple algorithm for generating random logical 2-d range queries, and we study its
performance both analytically and empirically. While in the worst case the algorithm takes expected time �(n2) for
databases of n points, in the case of uniformly distributed point sets it runs in constant expected time. We conducted
experiments over standard geographic databases, and over synthetic data sets of various fractal dimensions: in all these
cases, the running time of the algorithm was within a factor of two over its expected time on uniformly distributed
points, suggesting that the algorithm performance is e�cient and robust in practice.
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Figure 1: Random Rectangle vs. Random Query Rectangle: the outer and inner rectangles represent the same query,

though they are distinct rectangles.

We continue by considering the spatial properties of randomly generated logical queries. We note that the queries in
a randomly generated set of logical 2-d range queries, although likely to be diverse with respect to the set of points they
contain, may not be diverse with respect to natural properties such as area, cardinality, and aspect ratio. For example,
given a data set consisting of uniformly distributed 2-d points, the expected area of a random logical range query over
those points is approximately 36% of the total data space (the unit square), and the variance is only approximately
3%. Thus simply testing a data structure using random logical range queries will shed little light on how the data
structure performs on queries of di�ering area. Moreover, doing so is unlikely to expose the performance of the data
structure on \typical" queries, which are likely to be more selective.

To illuminate this issue further, we contrast these observations with properties of previously-proposed query work-
loads. These workloads provide explicit control over domain-speci�c properties like cardinality and area, but are not
necessarily diverse with respect to logical properties like the set of points they contain, or the cardinality of queries.
Thus these workloads may not provide good \coverage" of an index's behavior in di�erent scenarios, and may also not
be representative of \typical" real queries either. These observations raise a number of research issues, which broadly
amount to the following challenge: in order to allow experimentalists to do good work analyzing the performance of
indexes, we need better understanding and control of the techniques for generating synthetic workloads.

1.1 Related Work

Previous work on spatial index benchmarking used queries generated from domain-speci�c distributions, based on
geometric properties (area, position, aspect ratio, etc.) For example, many studies generated random rectangles in
the plane, and used these to query the index. Note that the spaces of random rectangles in the plane and random
queries are quite di�erent: this is illustrated in Figure 1. From a spatial perspective, r1 and r2 are distinct two-
dimensional rectangles. From a strictly logical perspective, however, r1 and r2 are identical queries, since they describe
the same subset of data. We are careful in this paper to distinguish random rectangles in the plane from random query
rectangles, which are chosen from the space of logically distinct rectangular range queries. It is inaccurate to consider
random rectangles to be good representatives of randomly chosen logical queries; we discuss this issue in more detail
in Section 5.

The original papers on many of the well-known spatial database indexes use domain-speci�c query benchmarks. This
includes the papers on R-trees [Gut84], R*-trees [BKSS90], Segment Indexes [KS91], and hB�-trees [ELS95]. For some
of those papers, the construction of the random rectangles is not even clear; for example, the R-tree paper describes
generating \search rectangles made up using random numbers...each retrieving about 5% of the data", and goes into no
further detail as to how those rectangles are chosen. The hB�-tree authors gave some consideration to the relationship
of queries and data set by forming each rectangle \by taking a randomly chosen existing point as its center" [ELS95];
a similar technique was used in [BF95]. Domain-speci�c techniques were also used in spatial index analysis papers,
including Greene's R-tree performance study [Gre89], and the various papers on fractal dimensions [FK94, BF95]
(which only used square and radius query ranges). The domain-speci�c approach has been studied in greater detail by
Pagel et al. Their work provides an interesting contrast to the work presented here, and we discuss this in depth in
Section 5.

1.2 Structure of the Paper

In Section 2 we present the algorithm for generating random logical 2-d range queries. We also provide analytical
results about expected running time over any data set, and expected running time over uniformly distributed data.
In Section 3 we present results of a performance study over other data distributions, which produces average running
times within a factor of 2 of the expected time over uniform data. Section 4 considers the spatial properties of
randomly chosen range queries, and in Section 5 we discuss the properties of rectangles generated by prior algorithms
that explicitly considered spatial properties. Section 6 re
ects on these results and considers their implications for the
practical task of empirically analyzing index performance.

2 An Algorithm for Generating Random 2-d Range Queries

2.1 Preliminaries

De�nition 1 Let S = f(x1; y1); : : : ; (xn; yn)g be a set of points in the plane. The minimal bounding rectangle (MBR)
containing S is

[minfx1; : : : ; xng;maxfx1; : : : ; xng]� [minfy1; : : : ; yng;maxfy1; : : : ; yng]



The rectangle represented by S is the MBR containing S. A query rectangle, with respect to a data set I, is a rectangle
that is represented by a set S � I.

Two rectangular regions contain the same set of points i� they have the same MBR. Thus the set of all query rectangles
corresponds precisely to the set of logically distinct rectangular region queries.

Although distinct sets of points can represent the same rectangle, we de�ne the canonical set of points representing
a rectangle (with respect to a data set) as follows.

De�nition 2 Let I be a data set and let q be a rectangle represented by a subset of I. The canonical top point of q
(with respect to I) is the leftmost point in I lying on the top boundary of q. Similarly, the canonical bottom point is
the leftmost point lying on the bottom boundary. The canonical left and right points of q are the topmost points lying
respectively on the left and right boundaries of q.

S is the canonical set of points representing q if S consists of the canonical bottom, top, left, and right points of q.

De�nition 3 There are four types of query rectangles: 1-point, 2-point, 3-point, and 4-point. An i-point query
rectangle is one whose canonical set consists of i distinct points.

A 4-point rectangle has one data point on each of its boundaries. A 3-point rectangle has one data point on a corner
of the rectangle, and one point on each of the two sides that do not meet at this corner. A 2-point rectangle is either
a line segment (a degenerate rectangle with zero height or width) with a data point on each end, or a non-degenerate
rectangle with data points on 2 opposite corners. A 1-point rectangle is a single point (a degenerate rectangle, with
no height or width).

De�nition 4 For data set I, the logical distribution on rectangular queries is the uniform distribution on the set of all
distinct query rectangles represented by subsets of I. A random query rectangle is a query rectangle that is generated
according to the logical distribution on rectangular queries.

2.2 Approaches to Generating Random Query Rectangles

We consider the problem of generating random query rectangles. It is easy to generate a random rectangular region
[x1; x2] � [y1; y2], chosen uniformly from the space of all such regions. Generating a random query rectangle is not as
easy. Some of the most natural approaches to generating random query rectangles do not work, or are impractical.
Consider for example the idea of generating query rectangles by choosing four data points at random, and taking the
minimal bounding rectangle containing those points. Under this scheme, a rectangle which has one data point on each
of its four sides could only be generated by choosing precisely those four points. In contrast, a rectangle with two data
points at opposite corners, and many data points in its interior, could be generated by choosing the two corner points,
and any two points from its interior. As a result, this scheme will be biased towards the latter type of rectangle. Other
techniques, such as \growing" or \shrinking" random rectangles until a query rectangle is achieved, have similar biases.

A naive approach to avoiding such bias is to generate all query rectangles and pick one uniformly from among
them. However, since there can be �(n4) query rectangles, this approach is grossly impractical for sizable databases.
A somewhat less naive method, which uses a range tree, correctly generates random query rectangles, but requires
�(n2 log n) preprocessing time for a preprocessing stage, and �(log n) time to generate each query following the prepro-
cessing stage. The method uses �(n2 log n) storage. Since n is typically large this is still impractical, and we omit the
details of this method here. It is an interesting open question whether there is a scheme for generating random query
rectangles that in the worst case uses O(n log n) space, preprocessing time O(n log n), and time O(log n) to generate
each random query rectangle following the preprocessing stage. The method we present in the next section does not
achieve these bounds in the worst case, but it does work quite well in practice.

2.3 The Algorithm

We present a simple Las Vegas algorithm for generating random query rectangles. The amount of time it takes to run
can vary (because of randomness in the algorithm), but when it terminates it produces a correct output|a random
query rectangle.

Our algorithm for generating a random query rectangle �rst chooses, with an appropriate bias, whether to generate
a random 1-point, 2-point, 3-point, or 4-point rectangle. It then generates a rectangle of the appropriate type, chosen
uniformly from all query rectangles of that type. We present the pseudocode in Figure 2. We call an iteration of the
repeat loop in the algorithm a trial. We say that a trial is successful if the set Z generated in that trial is output.

Proposition 1 On any input data set I, the Las Vegas algorithm in Figure 2 outputs a random query rectangle.

Proof. We consider the query rectangle output by the algorithm to be the rectangle represented by the set Z output
by the algorithm.

Consider a single trial. If the set Z generated during the trial is a 1-point set or a 2-point set, then Z must be the
canonical set of points representing the MBR containing Z. If Z is a 3-point set or a 4-point set, then Z is output i�
it is the canonical set of points representing the MBR R containing Z. Thus Z is output i� if is the canonical set of
points for the query rectangle it represents.

We need to show that the algorithm outputs each possible query rectangle with equal probability. Let R be a
j-point query rectangle for some j between 1 and 4. Let Q be the canonical set of points for R. In any trial, the set



Repeat until halted:

1. Generate a number i between 1 and 4, according to the following probability distribution:

(a) Let t =
�
n

1

�
+
�
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2

�
+
�
n

3

�
+
�
n

4

�
. For j 2 f1; : : : ; 4g, Prob[i = j] =

(nj)
t
.

2. (a) Generate a set Z containing i points of I uniformly at random from among all i-point sets in Z

(b) If i = 1 or i = 2 output Z.
(c) If i = 3 or i = 4, compute the MBR R containing Z, and check whether Z is the canonical set of points for R. If so, output

Z.

Figure 2: Las Vegas Algorithm for Generating Queries from the Logical Distribution

Z will be equal to Q i� i is chosen to be equal to j in line 1, and Z is chosen to be equal to Q in line 2. Thus the

probability that, in a given trial, Z is the canonical set of points for R is
(ni)
t
� 1

(ni)
= 1

t
.

The probability that a trial is successful is therefore r
t
, where r is the number of distinct query rectangles R.

The conditional probability of generating a particular query rectangle R in a trial, given that the trial is successful,
is 1

t
= r
t
= 1

r
. Since the algorithm outputs a query rectangle as soon as it has a successful trial, each distinct query

rectangle R is output by the algorithm with the same probability of 1

r
.

Proposition 2 On any input data set I consisting of n points, the expected number of trials of the Las Vegas algorithm

in Figure 2 is t

r
, where r is the number of distinct query rectangles represented by subsets of I, and t =

�
n

1

�
+
�
n

2

�
+�

n

3

�
+
�
n

4

�
.

Proof. This follows immediately from the proof of Proposition 1, in which it is shown that the probability that a
given trial is successful is r

t
.

2.4 Expected Performance over Worst-Case Data Sets

We now do a worst-case analysis of the expected running time of the algorithm. Our analysis will assume that all the
points can be stored in memory; when this is not the case there is an additional constant overhead for random I/Os in
a �le. and installed in many personal Since each trial will consist of only a few I/Os, we do not expect this overhead
to be signi�cant even for very large point sets.

Proposition 3 The expected number of trials of the Las Vegas algorithm of Figure 2 (on the worst-case input) is
�(n2).

Proof. By Proposition 2, the expected number of trials is t

r
. This quantity depends on r, which can vary according to

the con�guration of the points in the data set. We now bound r. On any n-point data set, the number of 1-point query

rectangles is n and the number of 2-point query rectangles is
�
n

2

�
. Therefore, on any data set, r is at least n+

�
n

2

�
.

This bound is achieved by data sets in which all points fall on a line 1, because such data sets de�ne no 3-point and
4-point rectangles. Since t = �(n4), the proposition follows.

Proposition 4 There is an implementation of the Las Vegas algorithm of Figure 2 that runs in expected time �(n2)
(on the worst-case input) with �(n log n) preprocessing.

Proof. Consider the following implementation of the algorithm. It requires that the data set be preprocessed. The
preprocessing can be done as follows. Form two sorted arrays, the �rst containing the data set sorted by x coordinate
(with ties broken by sorting on the y coordinate), and the second containing the data set sorted by y coordinate (with
ties broken on the x coordinate). With each data point p in the �rst array, store a link to the corresponding point in
the second array. This preprocessing can easily be implemented to run in time O(n log n).

The implemention of a trial is as follows. Generate the points Z using the �rst sorted array and calculate the MBR
R containing them. If Z contains 1 or 2 points, then output Z and end the trial.

Otherwise, begin checking whether Z is the canonical set of points for R by �rst checking whether all points in
Z lie on the boundary of R and whether each boundary of R contains exactly one point of Z. If not, end the trial
without outputting Z.

If Z passes the above tests, it is su�cient to check, for each boundary of R, whether Z contains the canonical point
on that boundary. To check a boundary of R, �nd the point p in Z lying on that boundary. Then access the point p0

immediately preceding p in the �rst array (for the left and right boundaries) or immediately following p in the second
array (for the top and bottom boundaries). Because of the links from p in the �rst to p in the second array, p0 can
be accessed in constant time for each of the boundaries. Check whether p0 lies on the same boundary of R as p. If
not, p is the canonical point on the relevant boundary of R, otherwise it is. If Z contains the canonical point for each
boundary of R, then output Z. Otherwise, end the trial without outputting Z.

1Another data set where the same bound is achieved by our algorithm is the grid data set (I = f(i; j) : 1 � i; j � k; n = k2g).
It 's easy to see that the number of di�erent range queries for this data set is �(n2), since any range query is de�ned by only
one or two points.



Since each of the steps in the above implementation of a trial takes constant time, each trial takes constant time.
By the previous proposition, the expected number of trials is �(n2), and thus the expected running time is �(n2).

Fortunately, the expected number of trials is signi�cantly lower than �(n2) for many data sets. For example consider
the \plus" data set, where the data points lie on two line segments, a horizontal and a vertical, intersecting each other
in the middle. Thus, the data set is divided into four partitions (up, down, left, right) of approximately the same size.
For this data set it can be shown that a set Z generated in Step 2(a) of the above algorithm is a canonical set with
signi�cant probability. In particular, if Z is a 4-point set, the probability that Z is a canonical set is equal to the
probability that the four points belong to di�erent partitions. Hence:

P (Z is a 4� pt canonical set) = 1 �
3

4
�
2

4
�
1

4
=

3

32
>

1

11

Since for the other query types (eg. 1-,2- or 3-point) the above probability is even higher, it follows that the expected
number of trials per query rectangle for this data set is most 11.

In the following section, we prove that on a uniform data set, the expected number of trials before the algorithm
outputs a query rectangle is less than 6, independent of the number of points in the data set. In Section 3 we present
empirical results on both arti�cial and real data sets, showing that the average number of trials is similarly small.

2.5 Algorithm Analysis: Uniform Data Sets

De�nition 5 A uniform data set is a set of points drawn independently from the uniform distribution on the points
in the unit square.

x

y
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y4

Figure 3: Query Rectangle

Proposition 5 Let I be a uniform dataset of size n. The expected number of trials of the Las Vegas algorithm in
Figure 2 on data set I is less than 6. As n increases, the expected number of trials approaches 6. (The expectation is
over the choice of points in I.)

Proof. Let fp1; p2; p3; p4g be a set of four distinct random points chosen from I (pi = (xi; yi)). Since the points in
I are chosen from the uniform distribution on the unit square, the probability that any two have a common x or y
coordinate is 0. Therefore, we assume without loss of generality that all four points have distinct x coordinates and
all have distinct y coordinates.2

Let S4 be the set of permutations of 4 elements x1; x2; x3; x4. We associate with the permutation � = (xi; xj; xk; xl)
the event A� = fxi < xj < xk < xlg. Clearly the A�'s partition the sample space, so if B is the event that fp1; : : : ; p4g
are the canonical set of points of a query rectangle, then by Bayes' formula

P (B) =
X
�2S4

P (BjA�)P (A�)

By symmetry P (A�) =
1

4!
for every � 2 S4 and P (BjA�) is the same for any � 2 S4, so P (B) is actually P (BjA�)

where � is any permutation. Taken in particular �0 = (x1; x2; x3; x4) (see Figure 3), then

P (BjA�) = P (y1; y4 between y2; y3) by symmetry

= 2P (y2 < y1; y4 < y3)

= 2

Z
1

0

dy3

Z y3

0

dy2

Z y3

y2

dy1

Z y3

y2

dy4

2In practice, the probability will not be zero because of �nite precision in the representation of points on the unit squre,
but it will usually be small enough so that its e�ect on the expected number of trials will be negligible.



Data Sets Algorithm Performance Query Properties (average over 1000 queries)
Average #Trials Seconds for Mean Mean
per Query Rectangle 1000 Queries Mean Area Cardinality Aspect Ratio

Uniform 6.033 3.61 0.36475 35.67% 1.170289
Double Cluster 9.530 4.04 0.3015 39.28% 1.124432
LBCounty 7.440 3.20 0.17285 36.62% 1.138304
MGCounty 6.450 2.95 0.1351 37.19% 1.234010
L�evy 1.46 12.92 4.64 0.06955 33.60% 4.993343
L�evy 1.68 8.741 3.87 0.08729 35.11% 0.360295

Table 1: Performance of the Randomized Algorithm, and Properties of the Random Range Queries

= 2

Z
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0
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dy2(y3 � y2)
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A similar argument shows that three distinct randomly selected points from I have probability 2

3
of being a canonical

set. One or two randomly selected points have probability 1 of being a canonical set.
Let Ij denote the set of all subsets of size j of the data set I, for j = 1; 2; 3; 4. For all sets S in Ij , let �S = 1 if the

points in S are the canonical points for the rectangle they represent, and �S = 0 otherwise. The expected number r
of query rectangles in I can be bounded as follows:

E[Number of Query Rectangles]

=
P
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j=1
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Since the expected number of trials of the Las Vegas algorithm is t

r
, where t =

P
4

j=1

�
n

j

�
, the expected number

of trials on data set I is less than 6. As n increases, the expected number of trials approaches 6, because for large n,�
n

4

�
>>

�
n

j

�
for j = 1; 2; 3.

3 Empirical Performance

In order to validate the e�ciency of the Las Vegas algorithm in practice, we conducted several experiments over
standard synthetic and geographic data sets. We also used a technique called L�evy 
ights [SZE95] to generate sets of
points with fractal dimension similar to those found in real-life data [FK94, BF95]. All data sets were normalized to
the unit square. In particular, we used the following 2-dimensional data sets:

� Uniform: In this data set 100000 points are uniformly distributed in the unit square.

� Double Cluster: This data set contains two clusters of approximately 50000 points each, one centered near the
origin, and the other close to the point (1; 1). The points in each cluster follow a 2-dimensional independent
Gaussian distribution with �2 = 0:1.

� LBCounty: This data set is part of the TIGER database [USBC92] and contains 53145 road intersections from
Long Beach County, CA.

� MGCounty: The same as above from Montgomery County, MD containing 39231 points.

� L�evy 1.46: This is a data set of 100000 points generated by the L�evy 
ight generator, with fractal dimension
approximately 1.46.

� L�evy 1.68: The fractal dimension here was close to 1.68 with the same number of points as above.

is
We used a main memory implementation of the algorithm to generate 1000 random range queries for each data set

and the results are shown in Table 1. The cost of the algorithm is expressed both as the number of trials per random
range query, and the elapsed time. Recall that all datasets are the same size except for the two real datasets. For the
Uniform data set the cost was very close to 6 trials, as anticipated. For the Double Cluster data set the cost was a
little higher but remained small. The algorithm performed very well for the real-life data sets even though these data
sets are clearly non-uniform. Finally, for the L�evy Flights data sets, the one with fractal dimension 1.46 had the higher
cost3. The results of the experiments indicate that our randomized algorithm is quite e�cient in practice, and robust
across a variety of distributions.

on

3This matches the intuition behind the use of fractal dimension in [FK94]: as discussed in Section 2.4, data laid out on a
line (fractal dimension 1) results in more trials than data laid out uniformly in 2-space (fractal dimension 2), hence one should
expect worse performance with lower fractal dimension. Unfortunately in further experiments we found counter-examples to
this trend; additional study of fractal dimension and query generation seems interesting, but is beyond the scope of this paper.
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4 Properties of Random Range Queries

In this section we consider various properties of the random range queries generated by our algorithm; in particular
we consider the area, cardinality and aspect ratio of the query rectangles. Note that, given a data set, the areas of the
query rectangles de�ned by that data set may not be uniformly distributed. In fact, as we show here, the contrary is
often true.

We �rst prove a result concerning uniform datasets.

Proposition 6 Let I be a uniform dataset. Let ~z = (p1; : : : ; p4) be four distinct random points chosen from I. The
expected area of the rectangle de�ned by ~z, given that ~z is the set of canonical set of points of a rectangle, is � = 0:36,
and the variance is �2 = 0:03

Proof. Let B be the event that ~z is the canonical set of points for a query rectangle, and let A� be the event associated
with the permutation � as above (Proposition 5). Then for �0 = (x1; x2; x3; x4) the area of the generated rectangle is
g(~z) = jx4 � x1jjy3 � y2j. Hence, the expected area is:

Expected Area = Efg(~z)jBg =

Z
B

g(~z)d~z

P (B)
= 6�

Z
B
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= 6�
X
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Z
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dx4
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dx1
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dy3

Z y3
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dy2

Z y3

y2

dy1

Z y3

y2

dy4(y3 � y2)

=
36

100

Similarly, the variance is computed equal to �2 = 0:03.
If we run our algorithm on a uniform dataset of any reasonably large size, then with high probability, the rectangle

returned by the algorithm will be a 4-point query rectangle (because in each trial, the probability that the algorithm
generates a 4-point set is very high, and on a uniform dataset, the probability that a 4-point trial is successful is 1/6).
Thus, by Proposition 6, the expected area of a rectangle generated by running our algorithm on a reasonably large
uniform dataset is approximately .36, with variance approximately .03. A similar analysis shows that the expected
aspect ratio of the generated rectangle (de�ned as the ratio of x-side over y-side) will be approximately 1.2 with variance
approximately 0.96.

In light of the above results, we were interested in the spatial properties (namely area and aspect ratio) for all of
our data sets. Table 1 shows the mean values of the three spatial properties in experiments of 1000 random range
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Figure 6: Frequencies of query-cardinality for various distributions.

queries over each of the various data sets. Figure 4 shows the frequency graphs of the areas of the queries for each data
set. From Figure 4 is clear that the distribution of the area of the generated random range queries is highly dependent
on the underlying data set. The Uniform data set gives a variety of large-area range queries, whereas for the fractal
data sets most of the query rectangles are smaller than 10% of the total area. In Figure 5 we present the frequencies
of the aspect ratio (long-side/short-side) for the same set of range queries, and in Figure 6 we present the frequencies
of cardinalities. Note that cardinality seems to be less sensitive to data distribution than the spatial properties.

One conclusion of this analysis is that a domain-independent \logical" query generator may have unusual properties,
and those properties may vary widely in data-dependent ways. This is a cautionary lesson about generating test queries
in a domain-independent fashion, which undoubtedly applies to the generation of queries over indexes in domains other
than spatial range queries. A natural alternative is to consider using domain-speci�c query generators when possible.
To explore this idea further, we proceed to examine domain-speci�c spatial query generation techniques from the
literature, and demonstrate that they raise complementary and potentially problematic issues of their own.

5 Alternative Techniques for Query Generation

As remarked above, other authors have considered domain-dependent query distributions. The most extensive explo-
ration of such distributions is to due Pagel et al. [PSTW93] They considered the expected cost of 2-d range queries
over distributions other than the logical distribution; in particular they proposed four speci�c classes of distributions.

The �rst class, called QM1, consists of distributions that are uniform over the space of all squares of area k (for
some �xed k) whose centers fall \within the data space", i.e., within the spatial boundaries of the existing data set.
This is a natural scheme with clear domain-speci�c properties. However, using a distribution from this class to test the
performance of an index has notable drawbacks. The workloads generated from this distribution are very sensitive to
the data distribution, and may not be statistically sound in covering the possible behaviors of the index. For example,
if the area k is a relatively small fraction of the data space (as is common in many previous studies), and if the data is
clustered in a small region of the data space, then random squares chosen fromQM1 are likely to be empty. Repeatedly
testing an index on empty queries may not yield the kind of information desired in experiments.

The other classes of distributions proposed by Pagel et al. attempt to overcome such drawbacks. Each of these
classes is de�ned in terms of a density function D on the data space. One, called QM2, is like QM1 in that it
consists of distributions over the space of squares of area k, for some �xed k, whose centers are within the the data
space. In QM2 distributions, though, the probability of each square is weighted according to the value of D at the
square's center. The remaining two classes of distributions, QM3 and QM4 are over the space of squares that enclose
a �xed fraction s of the total probability mass (as de�ned by D), for some s, whose centers are within the data space.
Distributions in QM3 are uniform over such squares, and distributions in QM4 weight each square according to the
value of D at its center.

Pagel et al. point out that the expected cost of performing a random rectangular query in a particular LSD-tree
(or R-tree, or similar data structure) is equal to the sum, over all leaves in the tree, of the probability that a random
rectangle intersects the rectangular region de�ned by the points stored in that leaf [PSTW93]. They use this fact to
compute analytically, for particular trees, the expected cost of a random rectangular query drawn from a distribution
in QM1. In contrast, to compute the expected cost of a rectangular query drawn from the logical distribution on
rectangular queries, we would use an empirical approach; we would generate random queries, determine the cost of
each, and take an average. The logical distribution is a di�cult one to work with analytically; unlike distributions in
QM1, it is a discrete distribution de�ned by a data set.



In later experimental work [PSW95, PS96], Pagel et al. use only distributions in QM1. As they point out, exactly
computing expected query cost with respect to distributions in QM3 and QM4 can be di�cult [PSTW93]. In addition,
distributions in QM2, QM3, and QM4 are de�ned in terms of a distribution D on the data space. Since a real data
set does not directly provide a distribution D on the data space, the last three query distributions are not well-de�ned
\in the �eld," that is, for real data sets (although in some cases it may be feasible to model the distribution D).

In short, the Pagel query distributions present a mirror image of our logical query distribution. The Pagel distri-
butions' domain-speci�c properties are easily controlled, and they are amenable to analytic analyses { they appeal to
the intuitive properties of 2-space. By contrast, the logical properties of these distributions (e.g. query cardinality)
are sensitive to data-distribution and often wildly skewed, and some of the available techniques are inapplicable to
real data sets. The domain-speci�c and logical distributions have very di�erent strengths and weaknesses for studying
indexes, and we elaborate on this in the next section.

6 On Randomization, Benchmarks, and Performance Studies

One advantage of domain-dependent distributions like QM1 is that they attempt to model a class of user behavior.
This is the goal of so-called Domain-Speci�c Benchmarking [Gra93], and is clearly a good idea: one main motivation
for benchmarking is to analyze how well a technique works overall for an important class of users. In the case of spatial
queries it makes sense to choose square queries of small area, for example, since users with graphical user interfaces
are likely to \drag" such squares with their mouse. This is natural when trying to get detail about a small portion of
a larger space shown on screen { e.g., given a map of the world one might drag a square around Wisconsin.

But random workloads can also be used to learn more about a technique { in particular to \stress test" it. To do
this, one wants to provide a diversity of inputs to the technique, in order to identify the inputs it handles gracefully, and
those it handles poorly. For indexes, a workload is described logically as a set of queries (subsets of the data), and the
indexing problem can be set up as a logical optimization problem: an indexing scheme [HKP97] should cluster items
into �xed-size buckets to optimize some metric on bucket-fetches over the workload (e.g. minimize the total number
of bucket fetches for a set of queries run in sequence). It is by no means clear that domain-speci�c considerations help
set up these stress tests { logical workloads seem more natural for this task.

One can easily quibble with both of these characterizations, however. Clearly the (domain-dependent) QM1

workloads do a bad job of modeling user behavior when they generate many empty queries { in essence, they ignore
the fact that users often do care about logical properties like cardinality. Conversely, the stress imposed by the logical
workload on a 2-d index is questionable if most of the queries are actually large and squarish as in Table 1: anecdotal
evidence suggests that long, skinny queries are the real nemesis of spatial indexes like R-trees, which were designed to
cluster points into squarish regions4 .

What then can one conclude about the pros and cons of logical and domain-speci�c query generation? In short,
that regardless of the technique an experimentalist uses to generate queries, she needs to understand and be able
to control the distribution of a workload over domain-speci�c and logical properties of relevance. Identifying these
properties is not a simple problem, and understanding how to generate queries that are well distributed over them is a
further challenge. One strong conclusion of our work is that this process has been little explored in index experiments
to date, and is in fact fairly complex.

Two-dimensional range queries are probably the best-understood, non-trivial indexing challenge. Thus a natural
direction for future work is to attempt and merge the insights from the previous sections to develop a malleable,
well-understood toolkit for experimenting with 2-d indexes. We conclude by exploring some ideas in this direction,
and raising questions for generating queries in other domains.

7 Conclusion and Future Directions

In this paper we highlight a new approach to generating random queries for index experimentation, which uses a logical
distribution on queries. We present an algorithm to generate queries from this distribution, showing that it has good
expected performance for some distributions, and good measured performance over a variety of real and synthetic data.
A remaining open problem is to devise an algorithm for this task with good guaranteed time- and space-e�ciency over
all point distributions.

The very di�erent properties of this distribution and previously proposed distributions suggest a new line of research:
developing techniques to allow experimentalists to easily understand and control various properties of their workload.
A direct attack on this problem is to �rst map desired domain-dependent properties into a distribution over the space
of logical queries, and then devise an e�cient algorithm for choosing from that distribution. In general this seems quite
di�cult, but the original problem tackled in this paper is a simple instance of this approach: it speci�es a distribution
over all queries P (D), with 100% of the distribution falling into the (domain-speci�c) category of query rectangles.
Perhaps this direct approach will prove tractable for other simple spatial distributions as well.

In addition to this direct theoretical challenge, a variety of potentially useful heuristics suggest themselves as well.
Rather than map spatial properties to a distribution over the logical queries, one can simply partition the data set on
spatial properties, and use the uniform logical distribution over the partitions. For example, to generate a distribution
with smaller average query area, one can tile the data space and run our Las Vegas algorithm over data partitions
that correspond to tiles. This seems rather ad hoc, but is perhaps easier to reason about logically than the totally
domain-speci�c techniques of Pagel, et al. It is also applicable to extant \real-world" data sets.

4In fact our interest in the subject of random 2-d range queries was sparked by an attempt to experimentally validate this
hypothesis about R-trees!



Another heuristic is to introduce new points into the query generator's data set in order to achieve biases on spatial
properties. For example, to increase the variance in aspect ratio of a uniformly distributed point set, one can insert
clusters of points along the extremes of one axis or the other. One can then run the resulting queries over the original
data set. This may allow for a better control over the resulting query mix than a domain-speci�c spatial technique.
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