We consider the problem of refining an abstract task plan into a motion trajectory. Task and motion planning is a hard problem that is essential to long-horizon mobile manipulation. Many approaches divide the problem into two steps: a search for a task plan and task plan refinement to find a feasible trajectory. We apply sequential quadratic programming to jointly optimize over the parameters in a task plan (e.g., trajectories, grasps, put down locations). We provide two modifications that make our formulation more suitable to task and motion planning. We show how to use movement primitives to reuse previous solutions (and so save optimization effort) without trapping the algorithm in a poor basin of attraction. We also derive an early convergence criterion that lets us quickly detect unsatisfiable constraints so we can re-initialize their variables. We present experiments in a navigation amongst movable objects domain and show substantial improvement in cost over a backtracking refinement algorithm.
Title
Sequential Quadratic Programming for Task Plan Optimization
Published
2016-12-16
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2016-218
Type
Text
Extent
29 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).