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ABSTRACT

Let M = (E,(g) be a given matroid, and let © be a given partition
of E which pairs the elements. I.e. each block of 7 contains exactly
two elements e and e; we call e the mate of e and vice versa. A set
A CE is said to be a parity set if, for each element e, e € A if and

only if e € A. The matroid parity problem is to find an independent

parity set with a maximum number of elements.

The matroid intersection problem and the nonbipartite matching pro-
blem are specializations of the matroid parity problem. A min-max duality
theorem for the parity problem generalizes duality theorems for matroid
intersection and for matching. An "augmentation" algorithm for the
parity ﬁroblem combines features of algorithms for matroid intersection
and for matching. The algorithm is computationally efficient, provided
there exists an efficient subroutine to test arbitrary subsets of ele-

ments for independence in the given matroid.
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1. PROBLEM DEFINITION

Let M = (E,é)) be a given matroid, and let m be a given partition
of E which pairs the elements. I.e., each block of m contains exactly )

two elements e and e; we call e the mate of E, and vice versa. A set

e

ACE is said to be a parity set if, for each element e, e € A if and

only if e € A. The matroid parity problem is to find an independent

parity set with a maximum number of elements. (The "weighted" parity
problem, as opposed to the "cardinality" problem, will be the subject
of a separate paper.)

The matroid intersection problem [2]-[4] and the nonbipartite match-
ing problem [1] are specializations of the matroid parity problem. A
min-max duality theorem for the parity problem generalizes duality
theorems for matroid intersection and for matching. An "augmentation
algorithm for the parity problem combines features of algorithms for
matroid intersection and for matching. The algorithm is shown to be
computationally efficient, provided there exists an efficient subroutine
to test arbitrary subsets of elements for independence in the given
matroid.

Before proceeding, we present some necessary definitioms.

A matroid M = (E,é)) is a combinatorial structure in which E is a
finite set of elements and é) is a nonempty family of subsets of E

(called independent sets)(satisfying the axioms:

(1.1) 1£1€ Qand 1' C1, then 1' € Y.

(1.2) If Ip and Ip+1 are sets in &) containing respectively p and p+l



Y

elements, then there exists an element e € I -Ip such that Ip+e € é).

p+l

(We use I + e and I - e to denote I U {e} and I - {e} respectively.
We also denote the symmetric difference of two sets by "(:)", and the
number of elements in I by |I|.)

A maximal independent set is a base. For a given subset A‘S E, we
call the cardinality of a maximal independent subset of A the rank of A,
denoted r(A). (All maximal independent subsets of A have the same cardi-
nality.) The span of A, denoted sp(A), is the unique maximal superset
of A such that r(sp(A)) = r(4a).

A set which is not independent (i.e. not in the family é)) is said
to be dependent. A minimal dependent set is called a circuit. It is a
basic theorem of matroid theory that if I is independent and I + e is
dependent, then I + e contains precisely one circuit. If a subroutine
exists for testing for independence, then the unique circuit in I + e
can be discovered by removing one element at a time from I + e and testing
for independence. If the removal of an element produces independence, the
element is returned to the set. The subset remaining at the end is the
unique circuit.

Intuitively, the span of A is the set which contains all the elements
of A, together with all elements e which form circuits with subsets of A.
Clearly, if A is independent and a subroutine exists for testing for
independence, it is possible to compute the span of A by testing A + e,
for all e & A. It is assumed in the statement of the algorithm that

subroutines are available to test a given set for independence.



2. PROBLEM REDUCTIONS

Suppose m is an arbitrary partition of E, i.e. each of its blocks
does not necessarily contain exactly two elements. An apparent generali-
zation of the matroid parity problem is obtained by asking for an inde-
pendent set I which contains a maximum number of elements, subject to
the condition that I contains an even number of elements from each block
of m. In fact, however, any parity problem of this type can be reduced
to a parity problem in which the elements are paired.

Let M = (E,gb and m, an arbitrary partition of E, be given. Let
P be the family of all pairs {ei,ej} such that e, and ey are contained
in the same Block of m. Create as many copies of each element e, as
there are pairs in P in which e, is contained. Denote these new ele-
ments eék), where k indexes the Pairs in P and eik) belongs to the
kth subset. Let E* contain all such elements e§k), where IE*I = 2‘P{
< Iel* - I5].

Let M* = (E*,EQ?) be the matroid obtained from M by letting all

(k)

copies e of e be "parallel" elements. I.e. if {ei(l)’ & (2)*
. . (k(1)) (k(2)) (k(p))
ei(p)} is an independent set of M, and ei(l) s ei(Z) s cees ei(p) are
* k(1)) _(k(2)) (k(p))
elements of E , then {ei(l) @2y 2ttt Bi(p) } is an independent

* ! * s
set of M , whereas {eik), eik )} is a circuit of M for any i, k # k'.

% *
Let m be the partition of E , each block of which contains exactly two
elements eik), egk) (corresponding the K0 pair {ei,ej} contained in P).
For each independent set I of M satisfying the parity conditions

: * *
given by 7, there corresponds at least one independent set I of M (with

* *
|I| = |1|) satisfying the parity conditions given by = . For each



* * *
independent set I of M satisfying the parity conditions given by =«

there corresponds a unique independent set I of M satisfying the parity
conditions given by w.

Now consider the reduction of the matching problem to a matroid
parity problem.

Let G = (N,A) be a graph with node set N and arc set A. We say
that a subset S C A is a matching in G if no two arcs in S are incident

to the same node. The (cardinality) matching problem is to find a

matching with a maximum number of arcs.

Replace each of the m arcs of G by a pair of arcs e and E, with a
new node between them, thereby obtaining the subdivision graph G'. Let
E be the set of 2m arcs of G', and let 9 contain all subsets I E E,
such that no two arcs of I are incident to the same node of G', unless
it is one of the nodes created by subdivision. Then M = (E,'Q) is a
matroid, and each independent parity set of M is identified with a
matching in G, and conversely. Therefore the matching problem is a
matroid parity problem.

We can also characterize matroid parity problems which can be
reduced to matching problems, as follows. Let E be a finite set and T
be an arbitrary partition of its elements into blocks, Bl’ B2, cees Bk'

Let

0 = {IgE|llﬂBi| <1,i=1,2, ..., k}.

Then M = (E,.Q) is a partition matroid (defined by the partition 1). A

matroid parity problem is equivalent to a matching problem if and only



if the given matroid is a partition matroid.
- Finally, we illustrate the reduction of the matroid intersection
problem to a matroid parity problem.
Let M1 = (E, {)1) and M2 = (E, £)2) be two matroids over the same

set of elements E. We say that I CE is an intersection of the two

matroids if I is an independent set of both Ml and MZ' The (cardinality)

matroid intersection problem is to find an intersection of the two

matroids with a maximum number of elements.
Replace each element e of M2 by a distinct element e & E, so that
M2 becomes a matroid over a new set E, disjoint from E. Next take the

sum of M1 and Mz. The sum M, + M

1 5 = (EV E,.Q), where

9=11, V1,01, € 9;. 1, € Oy,

is a matroid [2]. Each independent parity set of M is identified with

an intersection of M1 and MZ’ and conversely. Therefore, the matroid
intersection problem is a matroid parity problem.

We can also characterize matroid parity problems which can be reduced
to intersection problems, as follows. Let M = (E,é)) be an arbitrary
matroid and let 7 be a partition of E which pairs the elements. If there
exists a partition T with exactly two blocks, such that (1) e and e do
not belong to the same block of T, for any e, and (2) each circuit of M
is entirely contained within a single block of T , then we say that M

is separable with respect to 7.

A matroid parity problem is equivalent to a matroid intersection

problem if the partition m is such that M is separable with respect to w.



If in addition M is a partition matroid then the parity problem is equiva-
lent to a bipartite matching problem. Separability is a matroid analog

of graphic bipartiteness.

3. AUGMENTING SEQUENCES

Let S = (el,el,ez,ez, Vo em,em) be a sequence of distinct elements.

Let Si = {81’81’62’e2’ T ei—l’ei—l’ei}’ and Si = Si + e, Let T be

an independent parity set. S is said to be an alternating sequence with

respect to I if

_ E - I, for i odd,
(31D e., e, €
4 * L for i even,
(3:2) I+ e is independent,
(3.3) sp(I (3 5,) = sp(I + e)), for all i,

Note that, for all even i, ]ZC) Si is necessarily independent and

I s.| = |1] + 1. 1t follows that - all i ; I S, is

| (:) i| | 1] follows that, for all odd i < m (:) Si is
dependent.

An alternating sequence S is said to be an augmenting sequence with

respect to I if, in addition,
(3.4) m is odd
(3.5) I (:) gm is independent.

(Note that II C) S | 2 |I| + 2 and that sp(I (:) gm) 2 sp(I).)

m



Theorem 3.1
Let IZk and 12k+2 be independent parity sets with 2k and 2k + 2

elements respectively. Then there exists an augmenting sequence

s C 12k® I,k With respect to I, .

Proof:

Proof is by induction on |12k® 12k+2|' 1f |;2k@ 12k+2| = 2, it

is clear that IZk(:) I = {el,el} yields an augmenting sequence.

2k+2
Suppose IIZk(:) I2k+2| = 2p > 2. By matroid axiom (1.2), there must
exist an element ey € 12k+2 - I2k such that IZk + ey is independent.

If I.. + e, + e, is independent then S = (el,él) is an augmenting

2k 1 1
sequence. If I2k + ey + 51 is dependent, then there exists a circuit
cC Iy, te tep, with C - 12k+2 # ¢. Let e, be any element belonging
- - . Vo
to C - I2k+2’ Then (el,el,ez,ez) is an alternating sequence, and I2k
IZk + e+ él - e, - 52 is independent. By inductive assumption, there

exists an augmenting sequence with respect to Iék’ since Iék(:) 12k+2
=2p - 4. Let S' = (al,gl,az,az, . am,am) be such a sequence. There
are two cases to consider:

Case 1: There is an element ap € S' such that I + ap € &). Let ap

be the element of S' with largest index for which this is the case. Then

S = (ap, ap, ap+1, ap+l"°

respect to 1

.y am,_g;) is an augmenting sequence with
2k*
Case 2: There is no such element ap. Then S = (el,el,ez,ez,al,al’

az,az,...,am,am) is an augmenting sequence with respect to IZk'



Corollary 3.2

An independent parity set I contains a maximum number of elements

if and only if there exists no augmenting sequence with respect to I.

Corollary 3.3

For any independent parity set I there exists an independent parity

*
set I* with a maximum number of elements, such that sp(I) C sp(I).

4. BLOSSOMS

Let I be an independent parity set, B a parity set, and S an
alternating sequence. B is said to be a blossom with respect to I,

and S, an alternating sequence, is its stem, if

(4.1) r(8) = [1 N Bl + 1 (from which it follows that B is nonempty

and r(B) is odd).

(4.2) S is disjoint from B and contains an even number of element

pairs (S may be empty).

(4.3) for each element e, € sp(I) - sp(I - B), e; & I, there exists
an alternating sequence of the form (S;Bi;ei,éi),
where B, C B.

)
Given B, it follows from (4.1) that I is such that |I N B| is

maximal. Now suppose there is an augmenting sequence of which S is a
prefix and in which e Ei are contained, in that order, where e, € sp(1)
- sp(I - B) and e, & I. From (4.2) and (4.3) it follows that there
exists such an aﬁgmenting sequence for which |I N B| remains maximal

after augmentation.



Blossoms do not exist for matroid parity problems which are separ-
able with respéct to the given parity conditions. The existénce of
blossoms distinguishes nonseparable matroid parity problems from matroid
intersection problems, just as the existence of blossoms distinguishes
nonbipartite matching problems from bipartite matching problems.

The terms "blossom" and "stem" were originated by Edmonds [1] for
matching problems, where the terms are suggested by the appearance of
these structures in a drawing of the graph. It is also intuitively
appealing to make drawings of stems and blossoms for the matroid parity
problem.

Let elements be represented by arcs or lines. An element e con-
tained in I will be drawn as a wavy line, one not in I as a straight
line. Thus a typical alternating sequence is drawn as shown in Figure
1(a). We shall attempt to construct augmenting sequences by extending
the length of alternating sequences that have already been constructed.
Since a given alternating sequence can serve as the prefix of many
other alternating sequences, the result of this construction is a tree
structure, as shown in Figure 1(b).

Suppose a computation is undertaken in which alternating sequences
are extended, in an effort to construct an augmenting sequence. And
suppose in the course of this computation two alternating sequences P

and Q are found, where
P = (p1sPsPysPys +ovs PioPyseyse)s

Q = (ql’al’qz’az’ AR ] qg”-q-z’éi’ei)!



and where the following properties are satisfied:
(4.4) sp(I + pl) = sp(I + ql)

(4.5) except for e e,, any element pair contained in both P and

i

Q appears in the same order in each of them.

When such sequences P and Q are found, a blossom has been detected,
and it can be constructed as follows.

Because of the way in which the augmenting sequences are constructed
(cf. the tree structure of Figure 1(b)), we may assume that T =
PNQ - {ei’;i} is a prefix of both sequences. I.e. there is an integer

m such that

\

P = (TQPm+l3Pm+l’ M pk$pk)ei’ei)
Q = (T39,415947 =-+> 9g29g0855e;)

If T is empty (i.e. P and Q are disjoint except for e Ei), the
stem of the blossom is empty, and we say that the blossom is rooted.
For each element ej € (pPUQ - {pl,ql}, ej & I, find the unique circuit
Cj CI+ ej. Let par(Cj) denote the smallest parity set containing Cj.
Then the rooted blossom B is the union of P U Q = (P (:) Q) Y {ei’éi} and

par(C.), for all Cj'

|
If T is nonempty and contains an even number of element pairs, then

T is the stem of the blossom and we say that the blossom is short. For

E U - . . .
each element ej (p (:) Q) {Ci’ei}’ ej & 1, find the unique circuit

-10-



Cj CI+ ej. Let B' be the union of (P C) Q UV {ei,éi} and par(Cj),
for all Cj' Then the short blossom B = B' - {Em}’ where {pm,ﬁm} =
{qm,am}-is the final element pair of the stenm.

If T contains an odd number of element pairs, then the stem of the
blossom contains all but the final pair {pm,ﬁm} = {qm,am} of T, and we
say that the blossom is tall. The final element pair of T is called
ilgi’
Bm}, ej & I, find the unique circuit Cj CI+ ej. The tall blossom B

the base of the tall blossom. For each element ej € (p C) Q) UV {e

is the union of‘(P (:) Q) U {ei’gi’pm’sm} and par(Cj), for all Cj'
Blossoms can have a rather complex structu;e, as indicated schema~

ticélly in Figues 2 - 4. However, in each case it is possible to

verify that the sets B, as constructed above, satisfy conditions (4.1)

- (4.3) of the definition of a blossom. For example, to show that (4.1)

is satisfied in the case of a rooted blossom, let b' = B - {pl,ql}. It

follows from the construction of the circuits Cj that r(8') = |I N B'|.

Hence r(B)

II N BI + 1, because I + Py and I + 93 are independent and

sp(1 + pl) = sp(I + ql), by assumption. In the case of a short blossom,
v y -y = - N . .

let B' = B + p,» where {pm,pm} {qm,qm} is the final glement pair of

the stem. Then r(B') = [INB'| = r(B) = |INB| + 1. In the case of

a tall blossom, let B' = B - where {pm,ﬁm} is the base of the blossom.

Then r(B8') = |INB'| = r(B) - 1= |1 NB|.
When blossoms are detected in the course of the construction of
alternating sequences, we "shrink" them, thereby obtaining a (smaller)

problem on a matroid over the elements E - B. We then proceed with the

construction of alternating sequences, as though the new matroid were

-11-
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separable with respect to the parity conditions. That is, until another
blossom is detected and shrunk, etc.

As implied by condition (4.3), the shrinking of blossoms should
be such that for every alternating sequence passing through the blossom
before shrinking, there is a corresponding alternating sequence after
shrinking. For example, in place of the sequence (el,El, eey e7,§7)
in Figure 4, there shou d be the sequence (el,gl,ez,gz,e7,a7) after
shrinking.

Let em, ém be the final element pair of the stem of the blossom B,

if the stem is nonempty. Let

D= (sp(1) -sp(I-B) -I+e,
if the stem is nonempty, and

D = (sp(I) - sp(I - B)) - I,

otherwise. Let M(D) be the partition matroid which has as its bases
all singleton subsets of D. We shrink the blossom B by replacing the

matroid M by
MB =M ctr B + M(D),

where M ctr B denotes the contraction of B in M., I.e. if M = (E,f)),

then M ctr B = (E - B,,Qﬁ), where
Q' = (1'|x@' UB) = r(@") + r(B)}

The effect of shrinking a blossom is indicated in Figure 5. In

-12-~



this figure,

D = {em’dl?dz’d3}'

Theorem 4.1
There exists an augmenting sequence with respect to I in M if and
only if there exists an augmenting sequence with respect to I - B in
We outline a proof of the theorem as follows. First show that for

any sequence S' in M there is a corresponding sequence in M If S' is

B
disjoint from B in M, then S8' exists in MB' If S' is not disjoint from
B and has the stem of B as a prefix, then S' - B is a sequence in MB.
If S' is not disjoint from B and does not have the stem S of B as a
prefix, then there is a sequence in MB which does have S as a prefix.
Examples of these latter two cases are illustrated in the upper and lower
drawings in Figure 6 respectively.

The converse, i.e. that for any sequence S' in MB there is a
corresponding sequence in M, is perhaps a bit simpler to prove.

If ém & S', then S' is a sequence in M. If ;m € S', then there is a

sequence passing through B (by condition (4.3)), in M.

5. LABELLING PROCEDURE

The construction of augmenting sequences can be carried out by a
labelling procedure similar to that employed for the matroid intersection
problem [3], [4]. We first consider the adaptation of that procedure

to the parity problem, without considering the complications introduced

-13-



by the existence of blossoms.

An element is labelled when it is found to be contained in an
alternating sequence. The label identifies the previous element pair
in the sequence. Thus, if e; is given the label (j), the sequence con-
tains ey ;j’ e éi’ in that order; if it is given the label (j), the
sequence contains Ej’ej’ei’gi' In addition, we append a minus or a plus
to a label to remind us whether or not the element in question belongs
to I. Thus, the label (j)— on e, means that e, € 1; (j)+ means that
e, & 1.

The labelling procedure begins with the application of the label
(¢)+ to an element e, in E - sp(I) (and also to all other elements in
sp(I + el) - sp(I)). The label (d>)+ indicates that the element has no
predecessor in an alternating sequence. Additional elements are -
labelled (i.e. alternating sequences are extended) by "scanning" exist-
ing labels. A "+" label on e is scanned by first determining if
I+e, + Ei is independent. In this case an augmenting sequence has

1

been discovered, with e e, as the final pair of elements. If I + e

i 1
+ Ei is dependent, the unique circuit C S I+ e1 + Ei is found, and the
label (i)~ is given to each unlabelled element in C. A "-" label on ey
is scanned by giving each unlabelled element ej in sp(I) - sp(I - Ei)
the label i'. '

The labelling procedure terminates when no further elements can
be labelled or when an augmenting sequence is discovered, as described

above. The complete augmenting sequence can be obtained by "backtracking".

I.e. if the label of e, is (j)+, the second-to-last element pair in the

“14-



sequence is ej, éj' If the label of ej is (E)-, the third-to-last
element pair is Ek, e etc. The initial element of the sequence, of
course, has the label (¢)+.

It is not difficult to verify that the above rules are sufficient
to construct augmenting sequences in the case that no blossoms are
encountered.

A blossom is detected whenever both elements e, and éi of a pair
receive labels. The sequences P and Q (terminating in ei, éi and Ei’
e, respectively), described in the previous section, can be found by
backtracking from e, and Ei, respectively. One can then construct the
blossom B, its stem S, and, if the blossom is tall, its base, according
to the rules indicated in the previous section.

There is little difficulty in applying the same labelling procedure
to MB =M ctr B+ M(D) and I - B after the blossom B is shrunk. 1In
particular, a subroutine for independence testing in M can be adapted
to independence testing in MB’ for the sets required by the algorithm.
However, there is a problem involved in constructing an augmenting
sequence in M from an augmenting sequence in MB' I.e. one must know
how to find a "path' through the blossom B.

We cope with this problem by giving each element e, two labels,

i

or rather, a label with two components. The first component indicates

the predecessor of e, in an alternating sequence in M and the second

i

component indicates the predecessor of ei in an alternating sequence
in MB' The first component is used for backtracking to construct an

augmenting sequence in M, whereas the second component is used for

-15-



backtracking to construct a blossom in MB'
For example, in the lower drawing in Figure 2, the label given
+
to ey after the shrinking of the blossom, is (2,¢) ; in Figure 3

the label given to e. will be (4,2)+ (or Z,Z)+); in Figure 4 the

5

label given to e, will be (6,2)+. The second component of a label may

7

be revised with the detection and shrinking of further blossoms.

6. CARDINALITY PARITY ALGORITHM

The complete matroid parity algorithm is summarized as follows.
Step 0 (Start)

Let I0 be any independent parity set (possibly the empty set) in
the matroid M, = (EO’£)0)° Set b = 0. No elements are labelled. (All
references to independence, circuits, spans, etc. are with respect to
M -)

Step 1 (Labelling)

1.0 If there are no unlabelled elements in E_ - sp(Ib),’go to’
Step 4 (I0 contains a maximum number of elements). Otherwise, find an
unlabelled element e, in E. - sp(Ib) and give it, and all other elements

b
. B v
in sp(Ib + ei) sp(Ib), the label (¢,¢T. Set I Ib + e .-
1.1 1If all labels have been scanned, go to Step 1.0. Otherwise,
find an element e, with an unscanned label. If Ei is also labelled,
go to Step 3 (a blossom has been detected). Otherwise, if the label

of e; is a "+" label, go to Step 1.2; if it is a "-" label, go to Step

1.3.

-16-



1.2 Scan the "+" label of e, as follows. If I' + Ei is indepen-
dent, go to Step 2 (an augmenting sequence has been discovered). Other-
wise, identify the unique circuit C in I' + ;i and give each unlabelled
element in C - Ei the label (i,i) . Return to Step 1.1.

1.3 Scan the "-" label of e, as follows. Give each unlabelled
element in sp(I') - sp(1' - Ei) - Ei the label (i,i)+. Return to Step 1.1.
Step 2 (Augmentation)

An augmenting sequence with respect to I0 has been discovered, with
e Ei (found in Step 1.2) as the final element pair. The preceeding

elements in the sequence are discovered by "backtracking,'" using first

components of labels. I.e. if the first component of the label of e
is j, then the second-to-last element pair is ej’éj' If the first
component of the label of ej is E, then the third-to-last element pair

is ek, ek, etc. The initial element in the sequence has ¢ as the first
component of its label. Augment I0 by adding to IO all elements in the
sequence with "+" labels and removing from I, all elements with "-"
labels. Set b = 0. Remove all labels from elements. Return to Step 1.0.
Step 3 (Blossoming)

3.0 A blossom has been detected, containing the pair e Ei found

in Step 1.1. Backtrack from e, and from Ei’ using second components of

labels, thereby obtaining sequences P and Q, where
P = (pl’sl’pZ’EZ’ seey pk’sk’ei’éi) )
Q= (ql,al,ngc_lzg ceny qe’ae’éi’ei)‘

Find T=PNQ - {ei,éi},

-17-



= (p1sP1sPysPys vvs ProPl)s
= (ql’al’qz’az’ AR ] qm,am)'

If T is empty, go to Step 3.1.0. If T is nonempty and contains an
evén number of element pairs, go to Step 3.1.1. If T contains an odd
number of element pairs, go to Step 3.1.2.

3.1.0 (The blossom is rooted.) For each element ej € (pUQ -

I', identify the unique circuit Cj CI'+ ej. Set B = ? par(Cj). Set

Db = (sp(I') - sp(1I' - Bb)) - Bb. The labels of all elements in Bb are

considered to be unscanned. Go to Step 3.2.

3.1.1 (The blossom is short.) For each element ej € (p (:) Q)

¢

] - - . . . . ] =
{ei,ei} I, find the unique circuit Cj CI1'+ ej. Set B, ? par(Cj)
- {pm,pm}. Set Db = (sp(Ib) - sp(Ib - Bb)) - Bb + P The labels of

all elements in Bb are considered to be unscanned. Go to Step 3.2.

3.1.2 (The blossom is tall.) For each element ej € (p (:) Q U

- - ) ) c _

{ei,ei,pm} I, find the unique circuit Cj CI1'+ ej. Set B, y par(Cj)..
= - - - 5 i > = "y -

Set D = (sp(I) - sp(I, B)) - B +p ;s if m>1, and D (sp(1")

sp(I'—Bb)) = By, if m = 1. The labels of all elements in B, are considered

b
to be unscanﬁed. Go to Step 3.2.

3.2 1If all labels of elements in Bb have been scanned, go to Step
3.4, Otherwise, find an element e; € Bb with an unscanned label. If the
label of e, is a "+" label, go to Step 3.3; if it is a "-" label, go to
Step 3.5.

3.3 Scan the "+" label of e; as follows. If I' + Ei is not inde-

pendent, identify the unique circuit C in I' + Ei’ Give each unlabelled

element in (C - Ei) - T the label (i,i)—. (Each element so labelled is
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in Bb; the second component of the label will never be used.) Return
to Step 3.2.

n_n !t =
3.4 Scan the label of e, as follows. Let en Pn and e(m—l)'

=P _q.((@m1)" = ¢ if m = 1.) Give each unlabelled element in (sp(I')

- sp(I' - &) - &) - T the label (i,4)" if B, is rooted, (i,m")"* if B, is

b

tall. For each labelled element in (sp(I') - sp(I' - Ei) - T set the second
'component of the label to ¢ if Bb is rooted, m' if Bb is short, and (m - 1)'
if Bb is tall. (If such a label has been scanned, it is still considered

to have been scanned.) Return to Step 3.2.
3. = = - =
5 Set Mb+l Mb ctr Bb + M(Db), Ib+1 Ib Bb’ and Eb+1 E13
- B. If Bb is rooted, or tall withm =1, set I' = (I' - Bb)'+ e

where ej is any element in Db; otherwise set I' = I' - B Set b =0 + 1.

b
Return to Step 1.1. ~
Step 4 (Hungarian Labelling)

The labelling is "Hungarian." I, contains a maximum number of
elements. (A dual solution can be constructed from the labelling and

from the blossoms, as described in Section 7.) The computation is

completed.

7. MIN-MAX DUALITY THEOREM

A duality theorem can be proved for the matroid parity problem.
This theorem is of the same character as the min cut-max flow theorem
for network flows, the Konig-Egervary theorem foribipartite matchings,
Edmonds' odd-set covering theorem for nonbipartite matchings, etc. 1In
fact, these other theorems can be considered to be corollaries of the

matroid parity duality theorem.

Let Al, A2,..., Am be subsets of E. We say that the collection
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Al, Ayyenny Am is a parity covering of E if

m
E =Y par(a),

and we define the rank of the covering to be

m

Z r (4,

i=1
* 3
where, for i=1,2,...,m, T (Ai) is the largest even integer not greater

than r(A.) + r(gi), and where Ri C A, is the subset of elements of Ai
i =

i
whose mates are not contained in Ai’ i.e.

K = (S e .
g = legle; €ay 6 Ea)

Lemma 7.1

The rank of a covering cannot be strictly less than the cardinality
of an independent parity set.
Proof:

Let T be an independent parity set and Al’ A2,..., Am be a covering.

Then it must certainly be the case that

lTnal <@
and

~ = _ < ~ .
INA| = ]TN (par(a) - A)]| < x(a)
Thus, for i = 1,2,...,m,

*
r
|t Npar(A)| <r (a).
Since Al’A2’°"’ Am is a covering,

m m
III < Z II N par (Ai)l < ET*(Ai)

i=1 i=1

and the lemma is proved.
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The duality theorem asserts that there exists a covering and an
independent parity set that satisfy the inequality of Lemma 7.1 with
strict equality. This can be proved constructively, using the "Hun-
garian" labelling that exists at the end of the matroid parity algo-
rithm. However, in order to do this, we must first show how to trans-
form BO’ Bl’ cons Bb-l’ which are blossoms for the matroids Mo, Ml’ ooy
Mb—l’ into a set of blossoms for MO' (This construction is also
essential for the computation for the weighted parity problem.)

Let "~" be a relation on the indices of blossoms, where i -~ j if
either i = j or Di n Bj # ¢. (Note that i ~ j implies i < j. Hence

the transitive closure of " " is a partial ordering.) Let

o
i
C

o

G

1’ 2, o.o,b-l).

Lemma 7.2
*
Each of the sets Bj is a blossom of MO. Moreover, the maximal

%
blossoms Bj are disjoint.

We omit the proof of Lemma 7.2.

Theorem 7.3 (Matroid Parity Duality Theorem)
The minimum rank of a parity covering is equal to the maximum

cardinality of an independent parity set.

Proof:

Consider the "Hungarian" labelling that exists at the end of the
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algorithm. Let L C I, be the set of elements of I  which are labelled,

0 0
but do not belong to any of the blossoms Bo, Bl""’ Bb-l' Let U be the
(parity) set of all elements e; such that neither e; nor its mate Ei is

labelled. Set A) = sp(LYUy. Let Ay Agsene, A be the blossoms which

% * *
are maximal within the collection B0 s B1 geess Bb-l’ provided b > 1.

It can be verified that par(Al) contains all elements not in blossoms.
Thus, Al, Az,..., Am is a parity covering of E. Moreover, from the con-
struction, the sets par(Al), par(Az),..., par(Am) are disjoint, and, for

i=1,2,..., m

*
|1, VAl = @),

Thus,
m

Il = ) @,

i=1

and the theorem is period.

We now indicate how the duality theorems for graphical matchings
and matroid intersections follow as corollaries of Theorem 7.3.

Following Edmonds [1] terminology for matchings in graphs, a set
of 2r + 1 nodes is said to have (odd-set) rank one if r = 0 and rank r
otherwise. If r = 0, the set is a singleton set and is said to cover all
the arcs incident to that single node. If r > 1, the set covers all arcs
which are incident to two nodes in the set. A collection of odd sets is

an odd-set covering of the arcs, if every arc is covered by at least one

set in the collection.

Corollary 7.4 (0dd-Set Covering Theorem [1])

For a given graph G, the minimum rank of an odd-set covering of the

arcs of G is equal to the maximum cardinality of a matching in G.
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Proof:
Reduce the matching problem to a matroid parity problem by the con-
struction of Section 2, and apply Theorem 7.3. A minimal rank covering
Al’ AZ""’ Am constructed as in the proof of 7.3 yields an odd-set
covering as follows. (Note: References to "nodes" in the following are
to the "original" nodes of G, not nodes created by subdivision in the
course of the problem reduction.) Take as single nodes in the odd-set
covering all nodes incident to arcs in L E;Al, plus any single one of the
nodeé to which the arcs in U E;Al are incident, if U is nonempty. Take
as an odd set the remaining nodes to which arcs in U are incident. Take

as an odd-set the nodes to which arcs in each of the blossoms A seees Am

2
are incident. The resulting odd-set covering has (odd-set) rank equal to
one half the (parity) rank of the parity covering. (Recall that a maxi-
mum cardinality independent parity set has twice as many elements, i.e.

arcs of the subdivision graph, as G has ares in a maximum cardinality

matching.)

i
Let M1 = (E,.Qf, M2 = (E,.gz) be two matroids, and let sp ( ),
ri( ) indicate span and rank in matroid i, i = 1, 2. We say that El’ E2
provide a covering of E if E, v E, = E, and that the (intersection) rank

of the covering is rl(El) + r2(E2).

Corollary 7.4 (Matroid Intersection Duality Theorem [2]-[4])

Given two matroids Ml’ M2 over E, the minimum rank of a covering of

E is equal to the maximum cardinality of an intersection.

Proof:
Reduce the matroid intersection problem to a parity problem by the

1
construction of Section 2 and apply Theorem 7.3. Because the resulting
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matroid is separable with respect to the parity conditions, there exists

a minimal rank covering in the form of a single set Al (no blossoms exist).
We may assume, without loss of generality, that the labelled element e

at the root of each Hungarian tree is identified with an element

e, € E—spl(I Let L' CE and U' CE be the elements of E identified

0"

with elements of L and U. Then El = spl(U') and E2 = spz(L') is the
desired intersection covering with the appropriate rank. (The rank of

the parity covering being twice the rank of the intersection covering.)

8. COMPLEXITY OF THE PARITY ALGORITHM

We seek to establish an upper bound on the number of computational
steps réquired by the algorithm, as a function of n, the number of element
pairs (i.e. |E| = 2n). We assume that the number of computational steps
required for independence testing in M is c(n).

We assert that, for the sets that must be tested in each of the
matroids Mi formed by shrinking, the number of steps required for in-
dependence testing is O(nc(n)). (In nearly all cases independence testing
is only 0(c(n)).)

First, we notice that at most n augmentations are possible, if the
computation is begun with the empty set in Step 0. We therefore proceed
to investigate the amount of computation required for a single augmentation.

For a single augmentation, Steps 1.0 - 1.3 are each performed 0(n)
times, Step 2 once, and Step 3 O(n) times.

Step 1.0 requires the computation of sp(I) (the first time the step
is performed) and of sp(I + ei). Suppose that spans are computed by
successive tests for independence, as described in Section 1, and that the
subroutine for independence testing is n ¢(n) in length. Then each execution

of Step 1.0 is O(nzc(n)) in length.
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Step 1.1 is, at worst, O(n) in length.

Step 1.2 requires the testing of I +.ei for independence, which
is n c(n) in length, and possibly identifying a circuit in I + e,. If
the circuit computation is carried out as suggested in Section 1, it
is O(nzc(n)) in length, and this establishes an overall bound for the
step.

Step 1.3 requires the computation of sp(I'— Ei), which establishes
a bound of O(nzc(n)) for the step.

Step 2 is 0(n) in length.

Step 3.0 requires backtracking which is 0(n) and various operations
on two sequences which may also be assumed to be 0(n).

In Steps 3.1.0 - 3.1.2, each circuit C, requires a computation

J
which is O(nzc(n)) in length, and each such circuit Cj is computed at
most once per augmentation. Thus, we may assume that the computation
attributable to Steps 3.1.0 - 3.1.2 is O(n3 c(n)) per augmentation.

Steps 3.2 - 3.5 require scanning of labels of elements in the
blossom, regardless of whether or not they have been scanned before.
However, at worst, this implies only a single rescanning of any given
label. Thus, at worst, we need only repeat the amount of computation
performed in Step 1.

(Admittedly, there is a redundant computation of circuits in the
algorithm. The circuit C, CI' + e

3 3

to belong to a blossom and possibly two other times as part of scanning.

is computed once when ej is found

operations. Possibly this redundancy could be eliminated, with some

additional complication of the algorithm, i.e. additional housekeeping
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operations. However, this would at best improve the computational
bound only by a linear scale factor.)

When we multiply the bound for each step by the number of times
it is performed per augmentation, we obtain for Step 1.0, O(n3 c(n)),
Step 1.1 (0(n2), Step 1.2, 0(n3 c(n)), Step 1.3, 0(n> c(n)), Step 2,
O(n), and Step 3, O(n3 c(n)). The maximum of these bounds is O(n3 c(n)),
and this provides a bound on the length of computation per augmentation.
Since there are 0(n) augmentations a bound on the total computation is
O(n4 c(n)), a factor of n greater than that required for matroid inter-
section [4].

Thus, if c(n), the amount of computation required for independence
testing, is a polynomial function of n, then the overall amount of
computation requiredvby the algorithm is itself a polynomial function

of n.
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Fig. 1. Typical Augmenting Sequence and its Representation
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Fig. 5. Shrinking of Blossom
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