We present a class of algorithms for Independent Component Analysis (ICA) which use contrast functions based on canonical correlations in a reproducing kernel Hilbert space. On the one hand, we show that our contrast functions are related to mutual information and have desirable mathematical properties as measures of statistical dependence. On the other hand, building on recent developments in kernel methods, we show that these criteria and their derivatives can be computed efficiently. Minimizing these criteria leads to flexible and robust algorithms for ICA. We illustrate with simulations involving a wide variety of source distributions, showing that our algorithms outperform many of the presently known algorithms.
Title
Kernel Independent Component Analysis
Published
2001-11-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-01-1166
Type
Text
Extent
45 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).