The allocation of resources in operating systems is currently based on ad hoc heuristics and algorithms. Some well-known heuristics have been developed in such areas as process scheduling, memory management and network routing. The possibility that better decisions could be made by an Intelligent Agent employing expert system techniques is investigated in this report. The ability to learn from experience and to deal with uncertainty are two characteristics of expert systems that would be essential aspects of such an Intelligent Agent.
As multiple processor systems become more widely available, applications involving multiple concurrent processes will increase in number and importance. This increased interdependency among processes poses interesting problems in the area of processor scheduling. How should the processes be scheduled to achieve some optimal level of performance? A scheduler based on an expert system may prove to be a viable alternative to those that have been proposed and (in some cases) implemented so far.
This report describes the implementation of a learning mechanism that attempts to handle the problem of processor scheduling in such a multiprocessor environment. In effect, the Intelligent Agent tries to "learn" its own set of heuristics for optimally scheduling a set of co-operating processes. By simulating a relatively simple multiprocessor system we examine the merits of such an approach.
Title
AI in Operating Systems: An Expert Scheduler
Published
1988-12-15
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-88-487
Type
Text
Extent
31 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).