Description
This thesis studies generalization, the fundamental challenge in AI, and proposes solutions to improve the generalization performances of learning agents in a variety of problems. We start by providing a formal formulation of the generalization problem in the context of reinforcement learning and proposing 4 principles within this formulation to guide the design of training techniques for improved generalization. We validate the effectiveness of our proposed principles by considering 4 different domains, from simple to complex, and developing domain-specific techniques following these principles. Particularly, we begin with the simplest domain, i.e., path-finding on graphs (Part I), and then consider visual navigation in a 3D world (Part II) and competition in complex multi-agent games (Part III), and lastly tackle some natural language processing tasks (Part IV). Empirical evidences demonstrate that the proposed principles can generally lead to much improved generalization performances in a wide range of problems.