We describe our experience with collecting roughly 250, 000 image annotations on Amazon Mechanical Turk (AMT). The annotations we collected range from location of keypoints and figure ground masks of various object categories, 3D pose estimates of head and torsos of people in images and attributes like gender, race, type of hair, etc. We describe the setup and strategies we adopted to automatically approve and reject the annotations, which becomes important for large scale annotations. These annotations were used to train algorithms for detection, segmentation, pose estimation, action recognition and attribute recognition of people in images.
Title
Large Scale Image Annotations on Amazon Mechanical Turk
Published
2011-07-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2011-79
Type
Text
Extent
12 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).