In many applications it is desirable to analyze parametric curves for undesirable features like cusps and inflection points. Previously known methods to analyze such features are limited to cubics and in many cases are for planar curves only. We present a general purpose method to detect cusps in polynomial or rational space curves of arbitrary degree. If a curve has no cusp in its defining interval, it has a regular parametrization and our algorithm computes that.
In particular, we show that if a curve has a proper parametrization then the necessary and sufficient condition for the existence of cusps is given by the vanishing of the first derivative vector. We present a simple algorithm to compute the proper parametrization of a polynomial curve and reduce the problem of detecting cusps in a rational curve to that of a polynomial curve. Finally, we use the regular parametrizations to analyze for inflection points.
Title
Detecting Cusps and Inflection Points in Curves
Published
1990-01-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-89-549
Type
Text
Extent
29 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).