Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

WebTP: A USER-CENTRIC RECEIVER-DRIVEN
WEB TRANSPORT PROTOCOL

by

Rajarshi Gupta

Memorandum No. UCB/ERL M98/77

18 December 1998

WebTP: A USER-CENTRIC RECEIVER-DRIVEN
WEB TRANSPORT PROTOCOL

by

Rajarshi Gupta

Memorandum No. UCB/ERL M98/77

18 December 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

The use of TCP for the Web has caused a variety of performance problems because the interactive
request/response nature of Web traffic is incongruent with the sequenced, bi-directional, continuous,
byte-stream model of TCP. We believe that these problems can be overcome by abandoning the
constraints imposed by TCP and designing a new receiver-oriented transport protocol for the Web
that leverages the concept of Application Level Framing (ALF). In this report, we present a receiver-
oriented, request/response protocol for the Web that is amenable to ALF and compatible with the

dynamics of TCP’s congestion control algorithm.

The resulting protocol — WebTP — optimizes the transport of a document from the sender to
the receiver by taking into account a number of different factors like the contents of the page, the
state of the network, the available hardware at the client and even the preferences of the user. We
set up schemes to represent all of the above information, and design a system to implement the
optimization structure. The computationally feasible methodology adopted at the receiver allows it
to determine an optimal order of transport for the objects contained in the document. The resulting
transfer is optimized with respect to suitable utility functions and yields maximum satisfaction to

the user.

Such a framework for optimization demands a transport layer that is aware of the application and is
controlled at the receiver end. Our protocol is designed to be completely receiver-based in terms of
transport initiation, flow-control and congestion-control. In support of our receiver-driven design,
we developed a novel retransmission scheme that is robust to delay variations and can operate
without an explicit “ack clock”. The resulting flows achieve efficient network utilization and are
qualitatively fair in their interaction amongst themselves and even with competing TCP flows. The

report also provides detailed simulation results to support the protocol design.

Contents

1 Introduction

2 WebTP View of the Internet
2.1 Comprehensive Framework for Web Transport
2.1.1 ContentsofthePage o
2.1.2 HardwareattheClient,
| 2.1.3 Current Stateof the Network
2.1.4 Preferencesofthe User

2.2 Optimized WebTP Transfer

3 WebTP Optimization
3.1 Document Descriptor D e e
32 ClientSetof Rules C'. i i i i ittt it e i e
3.3 Network State N i i e e e e e e e
3.4 Utility Function U oo i i e e e e

3.5 DECISION « 2 v v v v e

4 Optimization Theorems
41 THEOREMI i et e et e e e e e e e e e e e e

4.2 THEOREMIL @ i e e e e e et ee e

11

12

13

14

14

16

17

5 Optimization Algorithms

5.1 Picking Optimal Ordering it
5.2 Picking Optimal Subset e e
5.3 Experimental Setupol e

6 Receiver-Driven WebTP Protocol

6.1 Flow Initiation and Termination
6.2 Sender e e e e e e e e
6.3 Window Control i i e e e e e e e e e e e e e e e
6.4 Rate Control o it i i it e e e
6.5 RetransmisSion v o v v it i e e e e e e e e e e e e e

6.5.1 Timeout o i e e e e e e e e e e e

6.5.2 Out-of-Order Packets e e e mm s

6.5.3 Queue Managementt
6.6 Calculating RTT at the Receiver
6.7 Soft StateatSender e

7 Simulation Results

7.1 Experimental Setup e e
7.2 WebTP Achieves Efficient Utilization of theLink
7.3 WebTP Flows Interact Well
7.4 WebTP and TCP Interact Well
7.5 Improved Queue Managemento e e
7.6 WebTP Performance AcrossaSlow Link

8 Summary

8.1 ConcluSion . & v v v e

ii

24

24

25

28

35

36

36

37

39

39

40

41

-42

43

44

45

45

47

49

51

52

53

56

8.2 Future Work . ..

8.3 = Acknowledgements

ooooooooooooooooooooooooooooooooooooo

.....................................

iii

Li'st of Figures

2.1

3.1

4.1

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

7.5

7.6

Conceptual View of WebTP 9
Document Transformationin WebTPot 12
Comparing Serial and Parallel Transmissions 18
Typical Web Transfer i 30
Optimized WebTP Transfero 32
Utility of WebTP Transfer vs Normal Web Transfer 33
Rate Control at Sender i i it it e e e e e 37
Slow-Start Controlled by the Receiver 38
Detecting Missing Pkts due to Out-of-Order Arrivals 41
Queue Management for Retransmission Requests 42
Calculating RTT at the Receiver 43
Experimental Setup e e 46
A Single WebTP flow across a 1.5Mbpslink 48
Three WebTP flows across a 1.5 Mbps link with Drop-Tail queue 49
Fairness for Three competing WebTP flows 50
One WebTP (solid line) and One TCP (dashed line) flow across 1.5 Mbps link . . . 51

Fairness for One WebTP and One TCP flow across 1.5 Mbps link 52

iv

7.7 One WebTP (solid lines) and One TCP (dashed line) flow across a RED Queue . . . 53
7.8 One WebTP flow acrossa 56 kbpslink 54
7.9 One WebTP flow (solid line) and One TCP flow (dashed line) across a 56 kbps link . 55

7.10 Fairness for One WebTP and One TCP flow acrossamodem link 55

Chapter 1
Introduction

The Web is a deceptively simple abstraction: a collection of distributed objects are each named ac-
cording to simple conventions — the uniform resource locator (URL) — and are stored across an en-
semble of object servers that span the global Internet. Clients retrieve objects from servers through a
request/response style of interaction embodied in the hypertext transport protocol (HTTP) [F+96].
To avoid the task of designing a new transport protocol from scratch and to facilitate rapid de-
ployment, the original Web architecture simply layered HTTP on top of the existing transport

protocol.

Layering HTTP over TCP affords tremendous benefit: TCP is ubiquitous, has been extensively
tuned, has a well-developed set of congestion control algorithms, and is well behaved under high
degrees of multiplexing. TCP provides a connection-oriented, reliable, bi-directional byte stream,
and as such, must transform the underlying unreliable Internet packet service into a reliable byte
stream. To do so, TCP establishes a “connection” between the two communicating end-points via a
“three-way handshake,” breaks the application’s byte stream at arbitrary boundaries to frame it in
packets, and performs end-to-end automatic repeat/request (ARQ) to implement reliable delivery,

all under the covers and hidden from the application using the service.

Because a congestion-controlled transport protocol like TCP is so difficult to design and implement
[Pax97], there is a strong incentive to reuse it across multiple applications. Consequently, a “one size
fits all” solution to network transport protocol has emerged, where almost every modern network
application — e.g., remote terminal access, bulk file transfer, data base update, and the Web —
is layered on top of TCP. Of course, this means that TCP must somehow offer a universal service

that is well matched to each of these applications. Unfortunately, the conflicting requirements of

this broad range of applications cannot be simultaneously satisfied with a monolithic protocol, and

instead, performance is sacrificed in favor of the TCP lingua franca.

The use of TCP for the Web, in particular, has caused a variety of performance problems because the
interactive request/response nature of Web traffic is incongruent with the sequenced, bi-directional,
contihuous, byte-stream model of TCP. An example of this impedance mismatch between TCP
and HTTP is the impact of Nagle’s algorithm [Nag84], a scheme to avoid the overhead of small
packets (e.g., from key strokes in a telnet session) by coalescing them into a single larger packet
when possible. The TCP sender delays transmission of small datagrams in the hope that the
application might attempt to transmit more data, trading off delay to reduce per-packet overhead.
Unfortunately, while Nagle’s algorithm is beneficial to telnet, it is detrimental to interactive Web
transfers, where small requests are delayed unnecessarily and thus application interactivity suffers
[Hei97, N+97, PK98].

While this particular performance problem can be easily overcome by disabling Nagle's algorithm
in TCP, a number of other fundamental performance problems result from pathological interactions
between TCP and HTTP:

e the TCP three-way handshake incurs unnecessary connection-setup delay even though the

Web communication model requires fundamentally only a single request and response;

e TCP’s slow-start congestion control phase can impact interactive performance since it “restarts”

after user idle periods [Hei97];

e TCP performance suffers from redundant network adaptation because multiple, independent

connections are often used for physically co-located transfers [N+97];

e packet reordering in the network causes TCP to withhold the delivery of received data that

is potentially useful but misordered, thus degrading interactivity;

e the framing of application data units (ADUs) onto packets cannot be controlled by the ap-

plication and thus individual packet losses incur increased performance degradation;

o a Web user’s requirements and priorities may vary rapidly and on a fine-grained basis at the
receiver (e.g., as a user manipulates browser controls), yet these receiver-driven requirements
can have no influence over how packets are sent and prioritized at the server-side of an in-

progress TCP-based Web connection; and finally,

e the connection-oriented nature of TCP places a disproportionate share of responsibility on

the sender side of the protocol, leading to unnecessary complexity in Web servers designed to

handle very large-scale workloads.

The many solutions suggested for the above problems may be classified into three categories:

1. HTTP Enhancements: These schemes try to improve the performance by altering HTTP
without modifying TCP. The advantage lies in the very fast deployment (Browsers get updated
every six months) and not having to deal with any alterations in the underlying transport layer.
Persistent HTTP (P-HTTP) [PM95] and HTTP1.1 [F+96] are instances of research efforts that fall

in this category.

2. TCP Enhancements: These try to enhance the underlying TCP protocol without altering
HTTP. Improving the efficiency of various TCP algorithms like loss recovery and congestion control
then have favorable effects on all applications that use this service. Transaction TCP (T/TCP)
[Bra94] and fast-start [PK98] are various approaches that follow the TCP-enhancement schema.

3. Proxy Enhancements: These schemes involve the creation of a proxy in the middle of the
. TCP connection — which interferes with the packet flow from the sender to the receiver and alters it
suitably to satisfy the needs of both sides. Work in this area include the Snoop protocol [BSAK95]
for TCP over wireless and the dynamic distillation proxy scheme [FGBA96)}.

All these solutions, while effective in their own niche, fail to address the overall problem. Even when
composed together, they do not pose a comprehensive solution for the problems of HTTP/TCP.
We believe that these problems can be overcome by abandoning the constraints imposed by TCP
and designing a new receiver-oriented transport protocol for the Web that leverages the concept
of Application Level Framing (ALF) [CT90]. ALF says that to optimize communication paths
within the application and across the network, an application’s semantics should be explicitly
reflected in the design of its network protocol. Although ALF has been assimilated into modern
protocols like the Real-time Transport Protocol (RTP) [SF96] and is now part of the network
research community’s folklore, paradoxically it has not been systematically applied to previously

existing applications like the Web.

With an ALF framework, Web data can be intelligently framed onto network packets so that a
client browser can process received packet data in an arbitrary order and allow retransmissions
of missing packets to be processed “in the background”. This resiliency to missing or reordered
data would substantially enhance the interactivity and performance of a Web browsing session
since connections are never unnecessarily stalled waiting for retransmitted packets. Moreover, by

adopting a receiver-driven design, such a protocol could quickly react to changing user requirements

3

(as inferred through the disposition of the browser’s user-interface) and modify the priority of
pending data requests on the fly. By resting the fate of reliable delivery on the receiver rather than
the source (as proposed in NETBLT [CLZ87]), the client can tailor its reliability requirements as
necessary, e.g., by easily aborting a transfer that becomes irrelevant due to dynamic user behavior.
Finally, a receiver-driven design reduces the complexity of the server implementation and amortizes
protocol state management and function across the large number of clients that interact with a

centralized server.

To realize the advantages of ALF and a receiver-based design, we have designed a new trans-
port protocol for the Web called WebTP. WebTP requires a number of new important protocol

components that our design weaves together into a comprehensive protocol framework, including:

e a naming scheme that allows receivers to request data in a semantically-aware, fine-grained

fashion from the server;
e an optimization framework that accounts for user requirements in transport protocol;

e data representations for Web content that are progressively-refinable and thus enable fine-'
grained adaptation (e.g., as a rate-limited packet stream is received, important image content

might be progressively refined expediently while background content is filled in more slowly);
e a congestion control framework whose dynamics are compatible with those of TCP;

e session-oriented caching of congestion-control state in order to reuse flow parameters across

several connections in a session
e a specific protocol specifications and packet formats; and,

e a flexible API that allows programmer’s to reflect application requirements and priorities

across the application/protocol boundary.

The inspiration for this project comes from the WebTP proposal [AMTVW98] made by the De-
partment of Electrical Engineering and Computer Science at UC Berkeley to the National Science
Foundation in March 1998. Much of this Introduction chapter is also attributed to that proposal,

which presented the motivation and the long-term goals of the project.

In this report, we do not present designs for all of these important protocol components nor do we
present definitive proof that WebTP will perform fundamentally better than TCP/HTTP. Instead,

we argue that a comprehensive and foolproof design of WebTP is an iterative process that will

require many interdependent contributions and defer much of this effort to future work. Here, we
present the first steps towards a World Wide Web which optimizes Web transfers to suit the user
and the current situation. We describe the overall view of the future Web, and define a qualitative

optimization scheme that will help us reach the goal.

We a.lso address the first crucial and open question for WebTP: Is it possible to devise a receiver-
oriented, request/response protocol for the Web that is amenable to ALF and compatible with the
dynamics of TCP’s congestion control algorithm? We claim that the answer to this question is
“yes,” and in the remainder of this paper present evidence to this end. We sketch the design of a
prototype protocol for WebTP and, through simulation, study its dynamics both alone and against
a competitive TCP traffic load. We find that our receiver-driven protocol is efficient in terms of

network utilization and is as qualitatively fair as TCP.

Chapter 2

WebTP View of the Internet

In this chapter we present a view of an Internet in which web transfers are optimized to include the
user into the “Transfer Loop”. The basic purpose of this chapter is to present, in a conversational
way, our driving motivations and the eventual goals of the project as outlined in [AMTVW9S].
We will use simple examples and compare with today’s standards to describe this utopian view.
Needless to say, most of the contents of this chapter lies in the category of Future Work and will

be handled as the project progresses.

2.1 Comprehensive Framework for Web Transport

The web transfer framework in use today is significantly rigid and unadaptive — once an user clicks
on an URL, all control passes over to the protocol, and the page is transported in the order in which
it was set up by its creator. Sometimes, the network performance is outstanding and the entire
page is rendered within seconds — at other more frustating times, we have to suffer through long
delays. In future, when the protocol utilizing Application Level Framing is aware of the application

and its requirements, the transfer should take into account all of the following available criterion.

e the contents of the page;
e the hardware at the client;
e the current state of the network; and

e the preferences of the user.

2.1.1 Contents of the Page

When a web page is created, the creator of the page has a fair idea about the relative importance
of the different objects on the page. Consequently, the creator should designate ‘values’ for each of
the individual objects on a page (e.g., on a news page like the New York Times, the main headline
could get a value of 10, each of the smaller stories get a value of 5, four pictures on the page each
have a value of 1 and the six advertisement banners each have value 2). The contents of a page
could be easily described by a metadata table which would include attributes like object type,

object size, value and the acceptable delay for the object.

A little more sophisticated version of such a table could provision for multiple versions of an object
(e.g., different resolutions for a picture). Another important feature is the ‘browse time’ of an
object — the expected time taken by an user to browse that object. The browse time is a function
of the size of the display, and the type of the object. Such an attribute is of outstanding value in
web transfers because the browsing time of the first few objects may be used for the transport of

‘the remaining objects, whence the user sees no effective delay for the later ones.

2.1.2 Hardware at the Client

The hardware present at the client is a vital component affecting web transfer and display, yet it is
completely ignored by today’s framework. A couple of intuitive examples make this very obvious.
Suppose the machine an user is working on is not equipped with a sound card — in that case it is
obviously futile to transfer any audio objects to that machine. Or if the user is browsing the web
on a PalmPilot, which has a low-quality, small, black-and-white display — then it would not be
efficient to retrieve the large jpeg files for colorful pictures. Again, suppose the client (a laptop) is
alternately connected over LAN and a Modem — since it knows its own connectivity status, the

client can thus decide whether to ask for the high-resolution image or settle for the lower one.

In a futuristic situation where the client is well aware of the available hardware and the requirements
of the application, it could make very well-judged decisions about what objects to transfer, as well

as the optimal way to carry out these transfers.

2.1.3 Current State of the Network

A web transfer is of course highly dependent on the current state of the network. One should first

acknowledge many distinguished research efforts that have attempted to optimize a web transfer

depending on the current network state (e.g., [FGBA96, N+97]). We will indeed leverage such

works to account for network variability in web transfer.

Considering that many of the network state variables are continually calculated by the Transport
layer of the protocol, it would be useful to utilize this knowledge in the Application layer too. For
exa,m.ple, if the protocol is aware of the cumulative bandwidth currently available being only 56.6
kbps, it should be able to make an intelligent choice and not attempt to start a video stream at

150 kbps.

Furthermore, these network variables calculated are also used to compute the expected arrival time
of the objects (transport time = size / transfer rate). An estimate of the loss rate being experienced
could alert the reliable application to change the level of error protection to give to the data. An
important aspect to consider is that while the previous factors mentioned are fairly static, and
not expected to change midway through a transfer, the state of the network is prone to rapid
deterioration. Consequently, the planned protocol needs to be dynamic and able to adapt quickly

to changes in the underlying network state.

2.1.4 Preferences of the User

The preferences of the user are probably the most important component that has been overlooked
in web transfer. Currently, the web browsers allow little control to the user — like switching off
images, or not starting any java aplets. We want to emphasize the fact that the ultimate goal of
any transfer is to satisfy the user, and it is critical to incorporate the preferences of that user into
the transport mechanisms. As such, the measure of utility generated by a page depends not only
on the contents of the page and when they arrive, but also on the preferences of the user who is

viewing the page.

User A might be really concerned about the sports scores on ESPN’s page, while user B might
care more for the visual excitement captured by the photographs. There is no way for a protocol
to guess such personal preferences unless they are captured in the form of User Rules. Such rules
could be learned by using a web form wherein the user clicks in his/her choices, these could then be
stored as user profile in the client machine. However, it is worthy of noting that preferences vary
widely across sites — a user visiting CNN’s web site is likely to pay more attention to the news
items and less to the accompanying photos; the same user while visiting Louvre Museum’s site
would care most for quality photographs, and considerably less for the accompanying text. Such

choices would then have to be stored as (user, website) pairs, like bookmarks files. The learning

interaction

Ly

£¥c
g~<
Y

A}
, | Document ————®{ Resources }—

-
e
-
~<
-
Se

-
.
.
,
’
N
.~
~
~
~
-,
.
.
’
’
’
1
)
[y
[N
~
~
~
.
-
’
’
’
[
.
[}
A
.
~
~
~
P
-
.
’
¢
N
.~
[N
~
~

Figure 2.1: Conceptual View of WebTP

process of such schemas would also have to be different, and the protocol would need to “learn”

the user preferences by evaluating his/her actions during visits to those pages.

The preferences of the user are also applicable when the document is finally displayed. Each object
on the page has some utility for the user, depending on its arrival time. The quantity of utility
imparted by each object are calculated using Utility Functions (discussed in detail in Section 3.4).
The utility generated by the objects together make up the ‘user satisfaction’ which is the ultimate

quantity that measures the success of a transfer.

2.2 Optimized WebTP Transfer

A transfer optimized by WebTP would occur as described in the following list. A conceptual view
of the transfer, emphasizing the interaction between the client and the server is demonstrated in
Fig. 2.1.

e Firstly, the receiver asks the sender to send the page;

e The sender begins by sending the document descriptor, containing a description of the con-

tents of the page;

e The receiver takes the descriptor page and applies its set of rules on it. These rules incorporate

the hardware constraints, as well as the preferences of the user. The result of this is an

altered version of the metadata table, with changed values for the utilities. Objects deemed

unnecessary for transfer have value 0;
In the background, the first few objects on the page are transferred, and displayed;

“These first transfers are utilized by the client to estimate the state of the network, especially
the available bandwidth;

Once the bandwidth is calculated, =52+ gives the required transfer time for each of the

objects;

Given the value, the transfer time of each object and the acceptable delay (i.e., an object is
useful if it appears before its acceptable delay, and of no value if it appears later), the problem

is recognizable as an optimization problem.

The transfer order is optimized with respect to some utility function that captures the satis-

faction granted to the user by the contents of the page;
The receiver then controls the transfer by getting the objects using a request-response model;

The transferred objects, finally displayed, generate maximum satisfaction for the user.

10

Chapter 3

WebTP Optimization

The ultimate goal of WebTP is to optimize a transfer so that it takes into account all the factors
described in Chapter 2. In this chapter, we attempt to formalize the ideas presented before and
formulate the problem in a scientific manner. The ideas presented here are not necessarily the
final version of the WebTP scheme. In fact, it is likely that the eventual schemes will be radically
different. However, in this report, we present an intuitive and feasible scheme for a solution to the
problem, which gives us a direction to focus on and will likely expose the potholes in the road to a

viable implementation.

The WebTP system can be characterized by the mathematical expression describing user satisfac-

tion:
S=f(D,C,N,U)

Here,

= User Satisfaction

= Document Descriptor
Client Set of Rules

= OQbserved Network State

T 2 QO U wun
I

= Utility Function

To express in words: Each document to be transported includes a descriptor D that summarizes

(in the form of metadata) the contents of the page. This descriptor D is initially transmitted

11

Client Document
Rules D !

Document
D

SATISFACTION

Figure 3.1: Document Transformation in WebTP

to the client. Keeping with the client-based aim of the model, the client applies its set of rules
C on the document descriptor D to generate a new scheme D’ of prioritizing the transfer of the
individual components of the page. The client also has to estimate the parameters to decide the
observed network state N. Next it applies the utility function U on D', based on the observed state
N, to generate the exact specifications for the transfer of the page. The transfer, which follows
this client-generated scheme is optimized to generate the maximum user satisfaction S. Fig. 3.1

explains it in the form of a flow chart.

We will now look at each of the individual components in more detail.

3.1 Document Descriptor D

The document descriptor is described by a metadata table that summarizes the contents of the
document. A document is viewed here as a set of items 1,2,...N and each object O[] has a set of

attributes attached to it. The attributes of object 7 are all or some of the following:

o Ol[i].size — size of the object (in kB). Fragmentation information is also given here to inform

the receiver of the preferred mode of fragmentation, if necessary;
e O[i].type — type of the object (e.g., text, jpeg, audio);
e Oli].position — display position on the page;

e O[i).value — value of the object as determined by the creator of the document, using any

suitable unit of value;

e O[i].priority — display priority of the object (e.g., objects of priority 5 must be displayed
before objects of priority 4);

12

e Oli].delay — the acceptable delay for this object i.e., in any transfer — this object must

arrive before this time;

o Oli).browse — the “estimated” amount of time spent by an user in browsing the object. The
.idea is that objects that are lower in the list be allowed to incur greater delay while the user

is busy browsing the previously transmitted objects.

It is conceivable to have different versions of the same object on the page (like different versions of

the same picture) — in which case we can expect

O[2d).value=20 Of[2b).value=5 O[2c|.value = 30
O[2a).size = 5Mb O[2b].size = 1IMb O[2c].size = 25Mb

Examples of metadata tables describing the objects on a page may be found in Chapter 5 (Tables
5.1 and 5.2).

The purpose of this document descriptor is to present the client with a complete description of the
page. It also provides the initial set of values for each object — it is imperative to include this in
D because it is the creator of the document who alone knows the relative values of the objects on

the page.

3.2 Client Set of Rules C

The client has its own set of rules C that act upon the descriptor D to produce an intermediate
version D’. The set of rules embody the special characteristics of the client state (hardware, software
and user) which only the client is aware of. For the machine lacking a sound card — rules C will

then give 0 value to any audio object.

The client set of rules considers the size and type of objects and acts on the value and the priority.

Currently we are considering a very simplified additive/multiplicative model:

if 0[i].type = xxx
set 0[i].value = «.0[i].oldvalue + 3 ;
set 0O[i].priority = O[i].oldpriority + v ;
Here, O < a < max factor K
B,7 could be +ve or -ve

OR

13

if 0[i].size > 2 Mb
set 0[i].priority = O[i].oldpriority - 1;

This algorithm enables the client to:
— Prevent transmission of unwanted object types
— Give higher priority to objects that are valued more under the current circumstances

— Delay objects that take too much time and consequently block other objects

A very strong advantage for this scheme is the user involvement. Such a set of rules can be easily

stored in the user profile and the transfers will thus be optimized for each user

3.3 Network State N

An integral part of the problem is the estimation of the network state. It is the current state of the
network which decides the amount of delay incurred by each object at the client. At a minimum,
we require the bandwidth, round-trip-time, delay, delay jitter (for real-time applications), and loss

rates.

The methodologies for estimating all of the above at the sender have been studied for a long timenow
— in order to effect measures like admission control, congestion control and error recovery. We will
try to leverage these knowledge to implement such schemes from the point-of-view of the receiver.
Ongoing efforts in this field, like the SPAND project [SSK97], also provide valuable insight into

possible solutions.

Inherent advantages and disadvantages of the receiver-based model are described in more detail in

Section 6, together with experimental results of a simulated receiver-driven scheme.

3.4 Utility Function U

The structure of the utility function determines the final measure of satisfaction gained from the

object. An initial model of the system works as follows:

14

Model 1

We view a transported document as a series of items 1,2,...M which are actually transported (i.e.,

this is the subset of objects chosen from the complete list of N objects on the page,so M < N)-

The user receives object ¢ at time T'(¢), where T'(i) is given by

_ Z§=1 O[j).size

T(4) =

Here, R is the rate. i.e., the time taken for object ¢ to arrive is the sum of the times taken to

transmit all the objects up to and including :.

Then, the satisfaction generated for the user is given by

M
S =" Oli].value x 1{T (i) < Oli].delay}

=1

This simple satisfaction model considers that item i has a fixed value O[:].value to the user provided

it reaches before O[i].delay and 0 value otherwise.

Model 1b

The objects are still transported in the same order, but the utility of the object now decays linearly

rather than be the binary scheme of 1 or 0.

Thus, satisfaction

M
S =) Oli].value x u

=1
where,
1 if T(:) < O[i].delaymin
o= o T it O delayan S TO) < Ofldeletne
0 if T(i) > Oli].delaymes
Model 2

The above model is extended to include the browsing time described previously.

Here satisfaction

M
S = Oli).value x 1{T (i) < B(i)}

=1

15

T(7) is as described above,
while B(i) = A+ 23;11 O[j].browse, the total time spent by the user in browsing the objects until
this one.

A = initial time that a user waits before anything arrives.

Each of the above models may be modified to incorporate multiple versions of the objects.

3.5 Decision

The system characterizes the problem as trying to maximize S = f(D,C, N,U).

Once the maximization is carried out, it generates the list of objects (from the original contents
of the page) which are to be transferred, and their ordering. These objects are then sequentially
requested from the sender. In a more advanced scheme, the client is also enabled to designate
the amount of error protection (e.g., Forward Error Correction) to be provided to each individual

object.

Implicit under this setup is the assumption that the network resources N remain constant through-
out the transfer — obviously invalid in the face of rapidly changing network parameters. The
protocol thus needs to recalculate on the fly all of the above and change its pattern of requests
to the sender. We are working on effective algorithms to solve the problem of carrying out these

calculations in an incremental and computationally feasible manner.

16

Chapter 4
Optimization Theorems

A first step to optimize transfers is to think of a priority-based scheme,in which each object O[7] in
document D' has a priority field (say from 1 to K, with 1 being the lowest). The simple transfer
scheme would then transfer all objects of priority K first, then those of priority (X — 1) and so on.
Amongst objects with the same priority (say objects ay, az, ...ar all have priority J, (J < K) — the

order is decided by maximizing the function

L
Sy = ZO[a,-].value X 1{T(a;) < D(a;)}

=1

Here,
D(a;) = Ola;].delay
and .
. Olay).size O[b).size
T(ai)=) Ola]-size kI]% + > O]-size]R
k=1 VO[b):0[b).priority>J
i.e.,
T(a;) = time when the current object gets there

= Time taken to transmit all objects up to itself of this priority

+ Time taken to transmit all objects of higher priority

An analysis of the system for the schemes outlined in Chapter 3 yields some results, as summarized

in the following two theorems.

17

Comparing Serial end Parallel Transters
100 T

90}

80

70F 4

ge of object P delh
v
-]
H
s
N
N

0 05
Time in seconds

Figure 4.1: Comparing Serial and Parallel Transmissions

4.1 THEOREMII

The utility of the parallel transmission is always less than or equal to that of the
optimal serial order.

For the utility models presented in Section 3.4, we compare the methods of Parallel and Serial
transmissions. In a serial transmission, the objects are transmitted one at a time, .while in a
parallel transmission the available bandwidth is split into IV streams, which then retrieve NV objects
in parallel. An example of the two types of transmission are shown in Fig. 4.1, which shows the
transmission for some object P. In the serial transmission, it begins to be transferred at 0.8 seconds,
at which time all the bandwidth is utilized for it and it arrives at 1.0 seconds. For the parallel
scheme, the transfer of object P starts at 0 seconds itself, but it utilizes only a fraction of the
bandwidth, so the transfer occurs far more slowly and continues till 1.0 seconds. The y-axis in the

graph shows the percentage of object P received at the destination.

Proof:
For simplicity of notation we hereby denote Oli].size as S(i) , O[i).browse as b() and Oli).delay
as D(i).

When there are N objects sharing a processor of rate R, each gets effective