We consider Markov decision processes (MDPs) with multiple long-run average objectives. Such MDPs occur in design problems where one wishes to simultaneously optimize several criteria, for example, latency and power. The possible trade-offs between the different objectives are characterized by the Pareto curve. We show that every Pareto optimal point can be epsilon-approximated by a memoryless strategy, for all epsilon > 0. In contrast to the single-objective case, the memoryless strategy may require randomization. We show that the Pareto curve can be approximated (a) in polynomial time in the size of the MDP for irreducible MDPs; and (b) in polynomial space in the size of the MDP for all MDPs. Additionally, we study the problem if a given value vector is realizable by any strategy, and show that it can be decided in polynomial time for irreducible MDPs and in NP for all MDPs. These results provide algorithms for design exploration in MDP models with multiple long-run average objectives.
Title
Markov Decision Processes with Multiple Long-run Average Objectives
Published
2007-08-22
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2007-105
Type
Text
Extent
18 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).