Machine learning has become a prevalent tool in many computing applications and modern enterprise systems stand to greatly benefit from learning algorithms. However, one concern with learning algorithms is that they may introduce a security fault into the system. The key strengths of learning approaches are their adaptability and ability to infer patterns that can be used for predictions or decision making. However, these assets of learning can potentially be subverted by adversarial manipulation of the learner's environment, which exposes applications that use machine learning techniques to a new class of security vulnerabilities.
I analyze the behavior of learning systems in adversarial environments. My thesis is that learning algorithms are vulnerable to attacks that can transform the learner into a liability for the system they are intended to aid, but by critically analyzing potential security threats, the extent of these threat can be assessed, proper learning techniques can be selected to minimize the adversary's impact, and failures of system can be averted.
I present a systematic approach for identifying and analyzing threats against a machine learning system. I examine real-world learning systems, assess their vulnerabilities, demonstrate real-world attacks against their learning mechanism, and propose defenses that can successful mitigate the effectiveness of such attacks. In doing so, I provide machine learning practitioners with a systematic methodology for assessing a learner's vulnerability and developing defenses to strengthen their system against such threats. Additionally, I also examine and answer theoretical questions about the limits of adversarial contamination and classifier evasion.
Title
Behavior of Machine Learning Algorithms in Adversarial Environments
Published
2010-11-23
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2010-140
Type
Text
Extent
244 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).