This thesis presents a simulation method for creating animations of gases and liquids that enhances the adaptability over current simulators within the computer graphics community. The method achieves adaptability in element size and shape by discretizing the domain with tetrahedra rather than regular hexahedra, the standard element shape in computer graphics. I also describe a method which allows the discretization to adapt arbitrarily from time step to time step without computational or numerical smoothing penalty. Additionally, I demonstrate a method to augment the fluid simulator with a rigid body simulator such that the fluid and rigid body simultaneously effect one another. Together these capabilities allow for complex scenarios to be simulated with a high level of detail while maintaining practical computation time, memory use, and ease of implementation.
Title
Fluid Animation from Simulation on Tetrahedral Meshes
Published
2007-12-17
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2007-153
Type
Text
Extent
118 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).