"Global" Learning algorithms for Discrete-Time Cellular Neural Networks (DTCNNs) are a class of learning algorithms where the algorithm designs the trajectory of the network. For binary input patterns, the global learning problem for DTCNNs is a combinatorial optimization problem. Properties of the solution space can be deduced using the available theory on Linear Threshold Logic. Results on the required accuracy of the network parameters are given. The problem of deciding whether a given task can be learned for a DTCNN architecture (feasibility problem) is conjectured to be NP-complete. A cost function is defined that is a measure of the errors in the mapping process from a set of input images onto the desired output images. Simulated Annealing methods are used to minimize this cost function. The algorithm is used to find the parameters of a standard DTCNN architecture for a simple pattern recognition task.
Title
The Learning Problem For Discrete-Time Cellular Neural Networks as a Combinatorial Optimization Problem
Published
1993-12-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
ERL-93-88
Type
Text
Extent
48 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).