An attractive paradigm for building fast numerical algorithms is the following: (1) try a fast but occasionally unstable algorithm, (2) test the accuracy of the computed answer, and (3) recompute the answer slowly and accurately in the unlikely event it is necessary. This is especially attractive on parallel machines where the fastest algorithms may be less stable than the best serial algorithms. Since unstable algorithms can overflow or cause other exceptions, exception handling is needed to implement this paradigm safely. To implement it efficiently, exception handling cannot be too slow. We illustrate this paradigm with numerical linear algebra algorithms from the LAPACK library.
Title
Faster Numerical Algorithms via Exception Handling
Published
1993-02-08
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-93-728
Type
Text
Extent
15 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).