Modern technological advances have prompted massive scale data collection in many modern fields such as artificial intelligence, and traditional sciences alike. This has led to an increasing need for scalable machine learning algorithms and statistical methods to draw conclusions about the world. In all data-driven procedures, the data scientist faces the following fundamental questions: How should I design the learning algorithm and how long should I run it? Which samples should I collect for training and how many are sufficient to generalize conclusions to unseen data? These questions relate to statistical and computational properties of both the data and the algorithm. This thesis explores their role in the areas of non-convex optimization, non-parametric estimation, active learning and multiple testing.
In the first part of this thesis, we provide insights of different flavor concerning the interplay between statistical and computational properties of first-order type methods on common estimation procedures. The expectation-maximization (EM) algorithm estimates parameters of a latent variable model by running a first-order type method on a non-convex landscape. We identify and characterize a general class of Hidden Markov Models for which linear convergence of EM to a statistically optimal point is provable for a large initialization radius. For non-parametric estimation problems, functional gradient descent type (also called boosting) algorithms are used to estimate the best fit in infinite dimensional function spaces. We develop a new proof technique showing that early stopping the algorithm instead may also yield an optimal estimator without explicit regularization. In fact, the same key quantities (localized complexities) are underlying both traditional penalty-based and algorithmic regularization.
In the second part of the thesis, we explore how data collected adaptively with a constantly updated estimation can lead to signifcant reduction in sample complexity for multiple hypothesis testing problems. In particular, we show how adaptive strategies can be used to simultaneously control the false discovery rate over multiple tests and return the best alternative (among many) for each test with optimal sample complexity in an online manner.
Title
Statistics meets Optimization: Computational guarantees for statistical learning algorithms
Published
2018-08-21
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2018-126
Type
Text
Extent
143 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).