This paper presents a study of possible extensions of Pathway Logic to represent and reason about semiquantitative and probabilistic aspects of biological processes. The underlying theme is annotation of reaction rules with affinity information that can be used in different simulation strategies. Several such strategies were implemented, and experiments carried out to test feasibility, and to compare results of different approaches. Dimerization in the ErbB signalling network, important in cancer biology, was used as a test case.
Title
Quantitative and Probabilistic Modeling in Pathway Logic
Published
2006-12-16
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2006-180
Type
Text
Extent
22 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).