Go to main content

PDF

Description

This thesis addresses the problem of generating goal-directed plans involving very many elementary actions. For example, to achieve a real-world goal such as earning a Ph.D., an intelligent agent may carry out millions of actions at the level of reading a word or striking a key. Given computational constraints, it seems that such long-term planning must incorporate reasoning with high-level actions (such as delivering a conference talk or typing a paragraph of a research paper) that abstract over the precise details of their implementations, despite the fact that these details must eventually be determined for the actions to be executed. This multi-level decision-making process is the subject of hierarchical planning.

To most effectively plan with high-level actions, one would like to be able to correctly identify whether a high-level plan works, without first considering its low-level implementations. The first contribution of this thesis is an "angelic" semantics for high-level actions that enables such inferences. This semantics also provides bounds on the costs of high-level plans, enabling the identification of provably high-quality (or even optimal) high-level solutions.

Effective hierarchical planning also requires algorithms to efficiently search through the space of high-level plans for high-quality solutions. We demonstrate how angelic bounds can be used to speed up search, and introduce a novel decomposed planning framework that leverages task-specific state abstraction to eliminate many redundant computations. These techniques are instantiated in the Decomposed, Angelic, State-abstracted, Hierarchical A* (DASH-A*) algorithm, which can find hierarchically optimal solutions exponentially faster than previous algorithms.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS