In 1981 Hong and Kung proved a lower bound on the amount of communication (amount of data moved between a small, fast memory and large, slow memory) needed to perform dense, n-by-n matrix-multiplication using the conventional O(n^3) algorithm, where the input matrices were too large to fit in the small, fast memory. In 2004 Irony, Toledo and Tiskin gave a new proof of this result and extended it to the parallel case (where communication means the amount of data moved between processors). In both cases the lower bound may be expressed as Omega(#arithmetic operations / M^(1/2)), where M is the size of the fast memory (or local memory in the parallel case).
Here we generalize these results to a much wider variety of algorithms, including LU factorization, Cholesky factorization, LDL^T factorization, QR factorization, Gram--Schmidt algorithm, algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear algebra.
The proof works for dense or sparse matrices, and for sequential or parallel algorithms. In addition to lower bounds on the amount of data moved (bandwidth-cost), we get lower bounds on the number of messages required to move it (latency-cost).
We extend our lower bound technique to compositions of linear algebra operations (like computing powers of a matrix), to decide whether it is enough to call a sequence of simpler optimal algorithms (like matrix multiplication) to minimize communication, or if we can do better. We give examples of both. We also show how to extend our lower bounds to certain graph theoretic problems.
We point out recently designed algorithms that attain many of these lower bounds.
Title
Minimizing Communication in Numerical Linear Algebra
Published
2011-02-28
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2011-15
Type
Text
Extent
42 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).