Recent approaches to multi-view learning have shown that factorizing the information into parts that are shared across all views and parts that are private to each view could effectively account for the dependencies and independencies between the different input modalities. Unfortunately, these approaches involve minimizing non-convex objective functions. In this paper, we propose an approach to learning such factorized representations inspired by sparse coding techniques. In particular, we show that structured sparsity allows us to address the multi-view learning problem by alternately solving two convex optimization problems. Furthermore, the resulting factorized latent spaces generalize over existing approaches in that they allow having latent dimensions shared between any subset of the views instead of between all the views only. We show that our approach outperforms state-of-the-art methods on the task of human pose estimation.
Title
Factorized Latent Spaces with Structured Sparsity
Published
2010-06-21
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2010-99
Type
Text
Extent
11 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).