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Abstract

Shapes, Paint, and Light

by

Jonathan Tilton Barron

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure
of the world from flat, 2D images of that world. Traditional methods for recovering scene
properties such as shape, reflectance, or illumination rely on multiple observations of the
same scene to overconstrain the problem. Recovering these same properties from a single
image seems almost impossible in comparison — there are an infinite number of shapes, paint,
and lights that exactly reproduce a single image. However, certain explanations are more
likely than others: surfaces tend to be smooth, paint tends to be uniform, and illumination
tends to be natural. We therefore pose this problem as one of statistical inference, and define
an optimization problem that searches for the most likely explanation of a single image. Our
model, which we call “SIRFS”, can be viewed as a superset of several classic computer vision
problems (shape-from-shading, intrinsic images, color constancy, illumination estimation,
etc) and outperforms all previous solutions to those constituent problems.

Though SIRFS performs well on images of segmented objects, it performs poorly on
images of natural scenes, which contain occlusion and spatially-varying illumination. We
therefore additionally present Scene-SIRFS, a generalization of SIRFS in which we have
a mixture of shapes and a mixture of illuminations, and those mixture components are
embedded in a “soft” segmentation of the input image. We additionally use the noisy depth
maps provided by RGB-D sensors (in this case, the Kinect) to improve shape estimation.
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Chapter 1

Introduction

At the core of computer vision is the problem of taking a single image, and estimating
the physical world which produced that image. The physics of image formation makes this
“inverse optics” problem terribly challenging and underconstrained: the space of shapes,
paint, and light that exactly reproduce an image is vast.

This problem is perhaps best motivated using Adelson and Pentland’s “workshop” metaphor
[2]: consider the image in Figure 1.1(a), which has a clear percept as a twice-bent surface
with a stroke of dark paint (Figure 1.1(b)). But this scene could have been created using
any number of physical worlds — it could be realistic painting on a canvas (Figure 1.1(c)), a
complicated arrangement of bent shapes (Figure 1.1(d)), a sophisticated projection produced
by a collection of lights (Figure 1.1(e)), or anything in between. The job of a perceptual
system is analogous to that of a prudent manager in this “workshop”, where we would like
to reproduce the scene using as little effort from our three artists as possible, giving us
Figure 1.1(b).

This metaphor motivates the formulation of this problem as one of statistical inference.
Though there are infinitely many possible explanations for a single image, some are more
likely than others. Our goal is therefore to recover the most likely explanation that explains
an input image. We will demonstrate that in natural depth maps, reflectance maps, and
illumination models, very strong statistical regularities arise that are similar to those found
in natural images [26, 69]. We will construct priors similar to those used in natural image
statistics, but applied separately to shape, reflectance, and illumination. Our algorithm
is simply an optimization problem in which we recover the most likely shape, reflectance,
and illumination under these priors that exactly reproduces a single image. Our priors are
powerful enough that these intrinsic scene properties can be recovered from a single image,
but are general enough that they work across a variety of objects.

Earlier versions of this work have been presented in a piecemeal fashion, over the course
of many papers [5, 7, 6, 8]. This dissertation is meant to simplify and unify those previous
works.
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(a) image (b) likely explanation

(c) painter’s explanation (d) sculptor’s explanation (e) gaffer’s explanation

Figure 1.1: A visualization of Adelson and Pentland’s “workshop” metaphor [2]. The image
in 1.1(a) clearly corresponds to the interpretation in 1.1(b), but it could be a painting, a
sculpture, or an arrangement of lights.

1.1 Prior work

The question of how humans solve the underconstrained problem of perceiving shape, re-
flectance, and illumination from a single image appears to be at least one thousand years
old, dating back to the scientist Alhazen, who noted that ”Nothing of what is visible, apart
from light and color, can be perceived by pure sensation, but only by discernment, inference,
and recognition, in addition to sensation.” In the 19th century the problem was studied
by such prominent vision scientists as von Helmholtz, Hering and Mach [34], who framed
the problem as one of “lightness constancy” — how humans, when viewing a flat surface
with patches of varying reflectances subject to spatially varying illumination, are able to
form a reasonably veridical percept of the reflectance (“lightness”) in spite of the fact that
a darker patch under brighter illumination may well have more light traveling from it to the
eye compared to a lighter patch which is less well illuminated.
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Land’s Retinex theory of lightness constancy [51] has been particularly influential in
computer vision since its introduction in 1971. It provided a computational approach to
the problem in the “Mondrian World”, a 2D world of flat patches of piecewise constant
reflectance. Retinex theory was later made practical by Horn [40], who was able to obtain a
decomposition of an image into its shading and reflectance components using the prior belief
that sharp edges tend to be reflectance, and smooth variation tends to be shading.

In 1978, Barrow and Tenebaum defined what they called the problem of “intrinsic im-
ages”: recovering properties such as shape, reflectance, and illumination from a single image
[9]. In doing so, they described a challenge in computer vision which is still largely un-
solved, and which our work directly addresses. Because this problem is so fundamentally
underconstrained and challenging, the computer vision community has largely focused its
attention on more constrained and tractable sub-problems. Over time, “intrinsic images” has
become synonymous with the problem that Retinex addressed, that of separating an image
into shading and reflectance components [35, 40, 51]. This area has seen seen some recent
progress [13, 71, 74, 33], though the performance of Retinex, despite its age, has proven hard
to improve upon [35]. The limiting factor in many of these “intrinsic image” algorithms
appears to be that they treat “shading” as a kind of image, ignoring the fact that shading is,
by construction, the product of some shape and some model of illumination. By addressing
a superset of this “intrinsic image” problem and recovering shape and illumination instead
of shading, our model produces better results than any intrinsic image technique.

Related to the problem of lightness constancy or “intrinsic images” is the problem of
color constancy, which can be thought of as a generalization of lightness constancy from
grayscale to color, in which the problem is simplified by assuming that there is just one
single model of illumination for an entire image, rather than a spatially-varying “shading”
effect. Early techniques for color constancy used gamut mapping techniques [31], finite
dimensional models of reflectance and illumination [58], and physically based techniques for
exploiting specularities [47]. More recent work uses contemporary probabilistic tools, such
as modeling the correlation between colors in a scene [27], or performing inference over priors
on reflectance and illumination [20]. All of this work shares the assumptions of “intrinsic
image” algorithms that shape (and to a lesser extent, shading) can be ignored or abstracted
away.

The second subset of the Barrow and Tenenbaum’s original “intrinsic image” formulation
that the computer vision research community has focused on is the “shape-from-shading”
(SFS) problem. SFS is traditionally defined as: recovering the shape of an object given a
single image of it, assuming illumination and reflectance are known (or assuming reflectance
is uniform across the entire image). This problem formulation is very complimentary to the
shape-vs-reflectance version of the “intrinsic images” problem, as it focuses on the parts of
the problem which “intrinsic images” ignores, and vice-versa.

The shape-from-shading problem was first formulated in the computer vision community
by Horn in 1975 [41], though the problem existed in other fields as that of “photoclinometry”
[66]. The history of SFS is well surveyed in [21, 80]. Despite being a severe simplification
of the complete intrinsic images problem, SFS is still a very ill-posed and underconstrained,



CHAPTER 1. INTRODUCTION 4

Figure 1.2: A bas-relief sculpture. The bas-relief sculpture on the right appears to be a deep
three-dimensional scene, despite being a physically shallow piece of metal.

and challenging problem. Onenotable difficulty in SFS is the bas-relief ambiguity [11], which
states (roughly) that the absolute orientation and scaling of a surface is ambiguous given only
shading information. This ambiguity holds true not only for SFS algorithms, but for human
vision as well [48]. An example of this ambiguity can be seen in bas-relief sculptures, such
as in Figure 1.2, which convey the percept of a rich, deep, three-dimensional scene despite
being physically shallow. We address this ambiguity by imposing priors on shape, building
on notions of “smoothness” priors in SFS [44], and by allowing for external observations of
shape (such as those produced by a stereo system or depth sensor) to be introduced.

Our model can be viewed as a generalization of an “intrinsic image” algorithm or color
constancy algorithm in which shading is explicitly parametrized as a function of shape and
illumination. Similarly, our model can be viewed as a shape-from-shading algorithm in
which reflectance and illumination are unknown, and are recovered. Our model therefore
addresses the “complete” intrinsic images problem, as it was first formulated. By addressing
the complete problem, rather than two sub-problems in isolation, we outperform all previ-
ous algorithms for either subproblem. This is consistent with our understanding of human
perception, as humans use spatial cues when estimating reflectance and shading [34, 18].

Because the intrinsic images problem is so challenging given only a single image, a much
more popular area of research in computer vision has been to introduce additional data to
better constrain the problem. Instances of this approach are photometric stereo [78], which
use additional images with different illumination conditions to estimate shape, and in later
work reflectance and illumination [10]. Our algorithm produces the same kinds of output
as the most advanced photometric stereo algorithm, while requiring only a single image.
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Problem Input Output
“Intrinsic Images” [13, 40, 74] 1 Image Shading, Refl.
Shape from Shading [41] 1 Shading, Illum. Shape
Shape from Contour [19, 49] 1 Image Coarse Shape
Photometric Stereo [10, 78] k Images Shape, Shading, Refl., Illum.
Inverse Global Illumination [79] k Images, Shape Shading, Refl., Illum.
Stereo / Structure from Motion [36] k Images Shape
Spatial Layout Estimation [38, 70] 1 Image Coarse Shape
Morphable Models [17] 1 Image of a face Shape, Shading, Refl., Illum.
SIRFS 1 Image of a masked object Shape, Shading, Refl., Illum.

Table 1.1: A taxonomy of “intrinsic image”-style problems in computer vision. For each
technique we list the minimum required input and the maximum output.

“Structure from motion” or binocular stereo [36, 76] uses multiple images to recover shape,
but ignores shading, reflectance, and illumination. Inverse global illumination [79] recovers
reflectance and illumination given shape and multiple images, while we recover shape and
require only a single image.

Recent work has explored using learning to directly infer the spatial layout of a scene from
a single image [38, 70]. These techniques ignore illumination and reflectance, and produce
only a coarse estimate of shape.

A similar approach to our technique is that of category-specific morphable models [17]
which, given a single image of a very specific kind of object (a face, usually), estimates shape,
reflectance, and illumination. These techniques use extremely specific models (priors) of the
objects being estimated, and therefore do not work for general objects, while our priors are
general enough to be applicable on a wide variety of objects: a single model learned on
teabags and squirrels can be applied to images of coffee cups and turtles.

To provide a unifying view of this complete intrinsic image problem, we present Table 1.1,
which is a sort of taxonomy of these problems according to the input they require, and the
output they have been shown to produce. We see that our model (SIRFS) is capable of
producing all of the output of any other technique, while requiring only a single image, and
while not requiring that the input belong to some specific category.

The driving force behind our model are our priors on shape, reflectance, and illumination.
To construct these priors we build upon past work on natural image statistics, which has
demonstrated that simple statistics govern local patches of natural images [26, 69, 43], and
that these statistics can be used for denoising [63], inpainting [68], deblurring [25], etc. But
these statistical regularities arise in natural images only because of the statistical regularities
in the underlying worlds that produced those images. The primary contribution of this work
is extended these ideas from natural images to the world that produced that natural image,
which is assumed to be composed of natural depth maps and natural reflectance images.
There has been some study of the statistics of natural depth maps [42], reflectance images
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[67] and models of illumination [24], but ours is the first to use these statistical observations
for recovering all such intrinsic scene properties simultaneously.
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Chapter 2

SIRFS

This chapter will proceed as follows: In Section 2.1 we will formulate our problem as one of
statistical inference and optimization, with respect to a set of priors over shape, reflectance,
and illumination. In Sections 2.2, 2.3, and 2.4 we present and motivate our priors on re-
flectance, shape, and illumination, respectively. In Section 2.5 we describe the rendering
engine used within SIRFS, and detail how to backpropagate gradients across that rendering
engine. In Section 2.6 we explain how we solve our proposed optimization problem. In
Section 2.7 we present a series of experiments with our model on real and pseudo-synthetic
variants of a dataset for which we have ground-truth, and on additional real-world images.
In Section 2.9 we detail some of the limitations of our model, some of which we will address
in Chapter 3.

2.1 Problem Formulation

We call our problem formulation for recovering intrinsic scene properties from a single image
of a (masked) object “shape, illumination, and reflectance from shading”, or “SIRFS”. SIRFS
can be thought of as an extension of classic shape-from-shading models [39] in which not
only shape, but reflectance and illumination are unknown. Conversely, SIRFS can be framed
as an “intrinsic image” technique for recovering shading and reflectance, in which shading is
parametrized by a model of shape and illumination. The SIRFS problem formulation is:

maximize
R,Z,L

P (R)P (Z)P (L)

subject to I = R + S(Z,L) (2.1)

Where R is a log-reflectance image, Z is a depth-map, and L is a spherical-harmonic model
of illumination [65]. Z and R are “images” with the same dimensions as I, and L is a vector
parametrizing the illumination. S(Z,L) is a “rendering engine” which linearizes Z into a set
of surface normals, and produces a log-shading image from those surface normals and L (see
the supplementary material). P (R), P (Z), and P (L) are priors on reflectance, shape, and
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illumination, respectively, whose likelihoods we wish to maximize subject to the constraint
that the log-image I is equal to a rendering of our model R + S(Z,L). We can simplify
this problem formulation by reformulating the maximum-likelihood aspect as minimizing a
sum of cost functions (by taking the negative log of P (R)P (Z)P (L)) and by absorbing the
constraint and removing R as a free parameter. This gives us the following unconstrained
optimization problem:

minimize
Z,L

g(I − S(Z,L)) + f(Z) + h(L) (2.2)

where g(R), f(Z), and h(L) (Sections 2.2, 2.3, and 2.4, respectively) are cost functions for
reflectance, shape, and illumination respectively, which we will refer to as our “priors” on
these scene properties 1. Solving this problem (Section 2.6) corresponds to searching for the
least costly (or most likely) explanation {Z,R, L} for image I.

2.2 Priors on Reflectance

Our prior on reflectance consists of three components: 1) An assumption of piecewise con-
stancy, which we will model by minimizing the local variation of log-reflectance in a heavy-
tailed fashion. 2) An assumption of parsimony of reflectance — that the palette of colors
with which an entire image was painted tends to be small — which we model by minimizing
the global entropy of log-reflectance. 3) An “absolute” prior on reflectance which prefers to
paint the scene with some colors (white, gray, green, brown, etc) over others (absolute black,
neon pink, etc), thereby addressing color constancy. Formally, our reflectance prior g(A) is
a weighted combination of three costs:

g(R) = λsgs(R) + λege(R) + λaga(R) (2.3)

where gs(R) is our smoothness prior, ge(R) is our parsimony prior, and ga(R) is our “abso-
lute” prior. The λ multipliers are learned through cross-validation on the training set.

Our smoothness and parsimony priors are on the differences of log-reflectance, which
makes them equivalent to priors on the ratios of reflectance. This makes intuitive sense,
as reflectance is defined as a ratio of reflected light to incident light, but is also crucial to
the success of our algorithm: Consider the reflectance-map ρ implied by log-image I and
log-shading S(Z,L), such that ρ = exp(I − S(Z,L)). If we were to manipulate Z or L to
increase S(Z,L) by some constant α across the entire image, then ρ would be divided by
exp(α) across the entire image, which would accordingly decrease the differences between

1Throughout this dissertation we use the term “prior” loosely. We refer to loss functions or regularizers
on Z, A, and L as “priors” because they often have an interpretation as the negative log-likelihood of
some probability density function. We refer to minimizing entropy as a “prior”, which is again an abuse of
terminology. Our occluding contour “prior” and our external observation “prior” require first observing the
silhouette of an object or some external observation of shape, respectively, and are therefore posteriors, not
priors.
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(a) univariate/grayscale GSM (b) multivariate/color GSM

Figure 2.1: Our smoothness prior on log-reflectance is a univariate Gaussian scale mixture
on the differences between nearby reflectance pixels for grayscale images, or a multivariate
GSM for color images. These distribution prefers nearby reflectance pixels to be similar,
but its heavy tails allow for rare non-smooth discontinuities. Our multivariate color model
captures the correlation between color channels, which means that chromatic variation in log-
reflectance lies further out in the tails, making it more likely to be ignored during inference.

pixels of ρ. Therefore, if we placed priors on the differences of reflectance it would be possible
to trivially satisfy our priors by manipulating shape or illumination to increase the intensity
of the shading image. However, in the log-reflectance case R = I −S(Z,L), increasing all of
S by α (increasing the brightness of the shading image) simply decreases all of R by α, and
does not change the differences between log-reflectance values (it would, however, affect our
absolute prior on reflectance). Priors on the differences of log-albedo are therefore invariant
to scaling of illumination or shading, which means they behave similarly in well-lit regions
as in shadowed regions, and cannot be trivially satisfied.

2.2.1 Smoothness

The reflectance images of natural objects tend to be piecewise constant — or equivalently,
variation in reflectance images tends to be small and sparse. This is the insight that underlies
the Retinex algorithm [35, 51, 40], and informs more recent intrinsic images work [71, 74, 33].

Our prior on grayscale reflectance smoothness is a multivariate Gaussian scale mixture
(GSM) placed on the differences between each reflectance pixel and its neighbors. We will
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(a) some R (b) gs(R) (cost) (c) ∇gs(R) (influence)

Figure 2.2: Here we have a color reflectance image R, and its cost and influence (derivative
of cost) under our multivariate GSM smoothness prior. Strong, colorful edges, such as those
caused by reflectance variation, are very costly, while small edges, such as those caused by
shading, are less costly. But in terms of influence — the gradient of cost with respect to each
pixel — we see an inversion: because sharp edges lie in the tails of the GSM, they have little
influence, while shading variation has great influence. This means that during inference our
model attempts to explain shading (small, achromatic variation) in the image by varying
shape, while explaining sharp or chromatic variation by varying reflectance.

maximize the likelihood ofR under this model, which corresponds to minimizing the following
cost function:

gs(R) =
∑
i

∑
j∈N(i)

c (Ri −Rj ;αR, σR) (2.4)

Where N(i) is the 5 × 5 neighborhood around pixel i, Ri − Rj is a the difference in log-
RGB from pixel i to pixel j, and c (· ;α, σ) is the negative log-likelihood of a discrete
univariate Gaussian scale mixture (GSM), parametrized by α and σ, the mixing coefficients
and standard deviations, respectively, of the Gaussians in the mixture:

c(x;α,σ) = − log
M∑
j=1

αjN
(
x ; 0, σ2

j

)
(2.5)

We set the mean of the GSM is 0, as the most likely reflectance image under our model
should be flat. We set M = 40 (the GSM has 40 discrete Gaussians), and αR and σR
are trained on reflectance images in our training set using expectation-maximization. The
log-likelihood of our learned model can be seen in Figure 2.1(a).

Gaussian scale mixtures have been used previously to model the heavy-tailed distributions
found in natural images [63], for the purpose of denoising or inpainting. Effectively, using
this family of distributions gives us a log-likelihood which looks like a smooth, heavy-tailed
spline which decreases monotonically with distance from 0. Because it is monotonically
decreasing, the cost of log-reflectance variation increases with the magnitude of variation,
but because the distribution is heavy tailed, the influence of variation (the derivative of log-
likelihood) is strongest when variation is small (that is, when variation resembles shading)
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and weaker when variation is large. This means that our model prefers a reflectance image
that is mostly flat but occasionally varies heavily, but abhors a reflectance image which is
constantly varying slightly. This behavior is similar to that of the Retinex algorithm, which
operates by shifting strong gradients to the reflectance image and weak gradients to the
shading image.

To extend our model to color images, we simply extend our smoothness prior to a mul-
tivariate Gaussian scale mixture

gs(R) =
∑
i

∑
j∈N(i)

C (Ri −Rj ;αR, σR,ΣR) (2.6)

Where Ri−Rj is now a 3-vector of the log-RGB differences, α are mixing coefficients, σ are
the scalings of the Gaussians in the mixture, and Σ is the covariance matrix of the entire
GSM (shared among all Gaussians of the mixture).

C(x ;α,σ,Σ) = − log
M∑
j=1

αj N (x ; 0, σj Σ) (2.7)

We set M = 40 (the GSM has 40 discrete Gaussians), and we train αR, σR, and ΣR on
color reflectance images in our training set (we train a distinct model from the grayscale
smoothness model). The log-likelihood of our learned model, and the training data used to
learn that model, can be seen in Figure 2.1(b).

In color images, variation in reflectance tends to manifest itself in both the luminance and
chrominance of an image (white transitioning to blue, for example) while shading, assuming
the illumination is mostly white, primarily affects the luminance of an image (light blue
transitioning to dark blue, for example). Past work has exploited this insight by building
specialized models that condition on the chrominance variation of the input image [35, 40,
71, 74, 33]. By placing a multivariate prior over differences in reflectance, we are able to
capture the correlation of the different color channels, which implicitly encourages our model
to explain chromatic variation using reflectance and achromatic variation using shading
without the need for any hand-crafted heuristics. See Figure 2.2 for a demonstration of
this effect. Our model places more-colorful edges further into the tails of the distribution,
thereby reducing their influence. Again, this is similar to color variants of the Retinex
algorithm [35] which uses the increased chrominance of an edge as a heuristic for it being
a reflectance edge. But this approach (which is common among intrinsic image algorithms)
of using image chrominance as a substitute for reflectance chrominance means that these
techniques fail when faced with non-white illumination, while our model is robust to non-
white illumination.

2.2.2 Parsimony

In addition to piece-wise smoothness, the second property we expect from reflectance images
is for there to be a small number of reflectances in an image — that the palette with which an



CHAPTER 2. SIRFS 12

Figure 2.3: Three grayscale log-reflectance images from our dataset and their marginal
distributions. Log-reflectance in an image tend to be grouped around certain values, or
equivalently, these distributions tend to be low-entropy.

image was painted be small. As a hard constraint, this is not true: even in painted objects,
there are small variations in reflectance. But as a soft constraint, this assumption holds. In
Figure 2.3 we show the marginal distribution of grayscale log-reflectance for three objects in
our dataset. Though the man-made ”cup1” object shows the most clear peakedness in its
distribution, natural objects like ”apple” show significant clustering.

We will therefore construct a prior which encourages parsimony – that our representation
of the reflectance of the scene be economical and efficient, or “sparse”. This is effectively a
instance of Occam’s razor, that one should favor the simplest possible explanation. We are
not the first to explore global parsimony priors on reflectance: different forms of this idea have
been used in intrinsic images techniques [33], photometric stereo [3], shadow removal [28],
and color representation [61]. We use the quadratic entropy formulation of [64] to minimize
the entropy of log-reflectance, thereby encouraging parsimony. Formally, our parsimony prior
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for reflectance is:

ge(R) = − log

(
1

Z

N∑
i=1

N∑
j=1

exp

(
−(Ri −Rj)

2

4σ2
R

))
Z = N2

√
4πσ2 (2.8)

This is quadratic entropy (a special case of Rényi entropy) for a set of points x assum-
ing a Parzen window (a Gaussian kernel density estimator, with a bandwidth of σR) [64].
Effectively, this is a “soft” and differentiable generalization of Shannon entropy, computed
on a set of real values rather than a discrete histogram. By minimizing this quantity, we
encourage all pairs of reflectance pixels in the image to be similar to each other. However,
minimizing this entropy does not force all pixels to collapse to one value, as the “force” ex-
erted by each pair falls off exponentially with distance — it is robust to outliers. This prior
effectively encourages Gaussian “clumps” of reflectance values, where the Gaussian clumps
have standard deviations of roughly σR.

At first glance, it may seem that this global parsimony prior is redundant with our local
smoothness prior: Encouraging piecewise smoothness seems like it should cause entropy to
be minimized indirectly. This is often true, but there are common situations in which both
of these priors are necessary. For example, if two regions are separated by a discontinuity in
the image then optimizing for local smoothness will never cause the reflectance on both sides
of the discontinuity to be similar. Conversely, simply minimizing global entropy may force
reflectance to take on a small number of values, but need not produce large piecewise-smooth
regions. The merit of using both priors in conjunction is demonstrated in Figure 2.4.

Generalizing our grayscale parsimony prior to color reflectance images requires generaliz-
ing our entropy model to higher dimensionalities. A naive extension of this one-dimensional
entropy model to three dimensions is not sufficient for our purposes: The RGB channels of
natural reflectance images are highly correlated, causing a naive “isotropic” high-dimensional
entropy measure to work poorly. To address this, we pre-compute a whitening transformation
from log-reflectance images in the training set, and compute an isotropic entropy measure
in this whitened space during inference, which gives us an anisotropic entropy measure.
Formally, our cost function is quadratic entropy in the space of whitened log-reflectance:

ge(R)= − log

(
1

Z

N∑
i=1

N∑
j=1

exp

(
−
‖WR(Ri −Rj)‖22

4σ2
R

))
(2.9)

Where WR is the whitening transformation learned from reflectance images in our training
set, as follows: Let X be a 3×n matrix of the pixels in the reflectance images in our training
set. We compute the matrix Σ = XXT, take its eigenvalue decomposition Σ = ΦΛΦT, and
from that construct the whitening transformation WR = ΦΛ1/2ΦT 2. σR is the bandwidth of

2Our whitening transformation of reflectance is not strictly correct, as we do not first center the data by
subtracting the mean. This was done both for mathematical and computational convenience, and because
the origin of the space of log-reflectance (absolute white) is arguable the most reasonable choice for the
“center” of our data.
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(a) No parsimony (b) No smoothness (c) Both

Figure 2.4: A demonstration of the importance of both our smoothness and parsimony priors
on reflectance. Using only a smoothness prior, as in 2.4(a), allows for reflectance variation
across disconnected regions. Using only the parsimony prior, as in 2.4(b), encourages re-
flectance to take on a small number of values, but does not encourage it to form large
piecewise-constant regions. Only by using the two priors in conjunction, as in 2.4(c), does
our model correctly favor a normal, paint-like checkerboard configuration.

the Parzen window, which determines the scale of the clusters produced by minimizing this
entropy measure, and is tuned through cross-validation (independently of the same variable
for the grayscale case). See Figure 2.5 for a motivation of this model.

Naively computing this quadratic entropy measure requires calculating the difference
between all N log-reflectance values in the image with all other N log-reflectance values,
making it quadratically expensive in N to compute naively. In Section 2.2.3 we describe an
accurate linear-time algorithm for approximating this quadratic entropy and its gradient,
based on the bilateral grid [22].

2.2.3 Efficient Quadratic Entropy

Here we will detail a novel method for calculating the quadratic entropy measure introduced
in [64], which we use in Equations 2.8 and 2.9 of our parsimony prior on log-reflectance.
Let x be a vector, N is the length of x, and σ is the bandwidth parameter (the width of
the Gaussian bump around each element of x). Then the quadratic entropy of x under the
Parzen window defined by x and σ is defined as:

H(x) = − log

(
1

Z

N∑
i=1

N∑
j=1

exp

(
−(xi − xj)

2

4σ2

))
Z = N2

√
4πσ2 (2.10)
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(a) Correct (b) Wrong Shape (c) Wrong Light

Figure 2.5: Some reflectance images and their corresponding log-RGB scatterplots. Mistakes
in estimating shape or illumination produce shading-like or illumination-like errors in the
inferred reflectance, causing the the log-RGB distribution of the reflectance to be “smeared”,
and causing entropy (and therefore cost) to increase.

Note that we will use H(·) here to describe entropy, rather than mean curvature. Our first
insight is that this can be re-expressed as a function on a histogram of x. Let W be the
bin-width of the histogram of x, let M be the number of bins, and let na be the count of x
in bin a. Then:

H(n) = − log

(
M∑
a=1

na

M∑
b=1

nb
Z

exp

(
−W

2(a− b)2

4σ2

))
(2.11)

Though the computation complexity of this formulation is still quadratic with respect to
M , if the histogram is constructed such that many datapoints fall in the same bin this
formulation can be much more efficient in practice. Our second insight is that this can be
expressed as a convolution of n with a small Gaussian filter. Let g be a Gaussian filter:

gd =
1

Z
exp

(
−W

2d2

4σ2

)
(2.12)

Where d is distance from the center. With this, we can rewrite H(n) as follows:

H(n) = − log
(
nT(n ∗ g)

)
(2.13)
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Where ∗ is convolution. This quantity is extremely efficient to compute, provided that the
lengths of n and g are small, which is true provided that the range of x is not much larger
than σ, which is generally true in practice.

This formulation also allows us to easily compute the gradient of V (n) with respect to
n:

∇H(n) =

(
−2

nT(n ∗ g)

)
(n ∗ g) (2.14)

Histogramming is a non-smooth operation, making this approximation to entropy not dif-
ferentiable with respect to x. However, if instead of standard histogramming we use linear
interpolation to construct n, then the gradient with respect to x is non-zero and can be
calculated easily.

Let RL and RU define the bounds on the range of the bins, with RU = min(x) and
RL = max(x). The fenceposts assigned to datapoint xi are bL and bU , where bL is the largest
fencepost below it, and bU is the smallest fencepost above it:

bL = b(xi −RL)/W c, bU = bL + 1 (2.15)

xi will be assigned to those bins according to these weights:

wL = (xi − bL)/W, wU = 1− wL (2.16)

When adding xi to the histogram, we just add these two weights to the appropriate bins:

nL = nL + wL, nU = nU + wU (2.17)

The partial derivatives of the histogram with respect to xi are simple:

∂nL
∂xi

= − 1

W
,

∂nU
∂xi

=
1

W
(2.18)

With this, we can construct the Jacobian J of n with respect to x, which is a M by N sparse
matrix. With this, we can calculate the gradient of H with respect to x:

∇H(x) ≈ JT∇H(n) (2.19)

This approximation to quadratic entropy is, in practice, extremely efficient and extremely
accurate. Other techniques exist for computing approximations to this quantity, most no-
tably the fast Gauss transform and the improved fast Gauss transform. Also, H(x) could
be computed exactly using the naive formulation in Equation 2.10. The naive formulation
is completely intractable, as the computation complexity is O(N2). The FGT-based algo-
rithms are O(N logN), and provide no efficient way to compute ∇H(x), which makes those
algorithms impossible to use in our gradient-based optimization scheme. Our approximation
has a complexity of O(N) (provided the kernel in the convolution is small) and allows for
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∇H(x) to be approximated extremely efficiently. In practice, our model produces approx-
imations of entropy that are usually within 0.01% of the true entropy, which is similar to
the accuracy obtained using the fast Gauss transform or the improved fast Gauss transform,
and is 10 or 100 times faster than the FGT-based algorithms.

This techniques for computing quadratic entropy for a univariate signal can easily be
generalized to higher dimensions. We use a three-dimensional generalization to compute the
quadratic entropy of a color (whitened) log-reflectance image. Instead of constructing a 1D
histogram with linear interpolation, we construct a 3D histogram using trilinear interpola-
tion, and instead of convolving our 1D kernel with a Gaussian filter, we convolve the 3D
histogram with three separable Gaussian filters.

Note that this formulation is extremely similar to the bilateral grid [22], which is a
tool for high-dimensional Gaussian filtering (used mostly for bilateral filtering, hence the
name). The calculation of our entropy measure is extremely similar to the “splat, blur,
slice” pipeline in other high-dimensional Gaussian filtering works [1], except that after the
“slice” operation we take the inner product of the input “signal” and the blurred output
signal. This means that we need not actually compute the slice operation, but can instead
just compute the inner product directly in the histogram space. This connection means that
the body of work for efficiently computing this quantity in the context of image filtering
can be directly adapted to the problem of computing high-dimensional entropy measures.
Recent work [1] suggests that for dimensionalities of 3, our bilateral grid formulation is the
most efficient among existing techniques, but that this entropy measure could be computed
reasonably efficiently in significantly higher-dimensionality spaces (up to 8 or 16) using more
sophisticated techniques.

2.2.4 Absolute Reflectance

The previously described priors were imposed on relative properties of reflectance: the differ-
ences between nearby or not-nearby pixels. We must impose an additional prior on absolute
reflectance: the raw value of each pixel in the reflectance image. Without such a prior
(and the prior on illumination presented in Section 2.4) our model would be equally pleased
to explain a gray pixel in the image as gray reflectance under gray illumination as it would
nearly-black reflectance under extremely-bright illumination, or blue reflectance under yellow
illumination, etc.

This sort of prior is fundamental to color-constancy, as most basic white-balance or
auto-contrast/brightness algorithms can be viewed as minimizing a similar sort of cost: the
gray-world assumption penalizes reflectance for being non-gray, the white-world assumption
penalizes reflectance for being non-white, and gamut-based models penalize reflectance for
lying outside of a gamut of previously-seen reflectances. We experimented with variations
or combinations of these types of models, but found that what worked best was using a
regularized smooth spline to model the log-likelihood of log-reflectance values.

For grayscale images, we use a 1D spline, which we have fit to log-reflectance images in
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(a) Training data and PDF (b) Samples

Figure 2.6: A visualization of our “absolute” prior on grayscale reflectance, trained on the
MIT Intrinsic Images dataset [35]. In 2.6(a) we have the log-likelihood of our density model,
and the data on which it was trained. In 2.6(a) we have samples from our model, where the
x axis is sorted by cost (y axis is random).

the training set as follows:

minimize
f

fTn + log

(∑
i

exp (−fi)

)
+ λ
√

(f ′′)2 + ε2 (2.20)

Where f is our spline, which determines the non-normalized negative log-likelihood (cost)
assigned to every reflectance, n is a 1D histogram of log-reflectance in our training data, and
f
′′

is the second derivative of the spline, which we robustly penalize (ε is a small value added
in to make our regularization differentiable everywhere). Minimizing the sum of the first
two terms is equivalent to maximizing the likelihood of the training data (the second term is
the log of the partition function for our density estimation), and minimizing the third term
causes the spline to be piece-wise smooth. The smoothness multiplier λ is tuned through
cross-validation. A visualization of our prior can be found in Figure 2.6.

During inference, we maximize the likelihood of the grayscale reflectance image R by
minimizing its cost under our learned model:

ga(R) =
∑
i

f(Ri) (2.21)
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where f(Ri) is the value of f at Ri, the log-reflectance at pixel i, which we computed using
linear interpolation (so that this cost is differentiable).

To generalize this model to color reflectance images, we simply use a 3D spline, trained on
whitened log-reflectance pixels in our training set. Formally, to train our model we minimize
the following:

minimize
F

<F,N> + log

(∑
i

exp (−Fi)

)
+ λ
√
J(F) + ε2

J(F) = F2
xx + F2

yy + F2
zz + 2F2

xy + 2F2
yz + 2F2

xz (2.22)

Where F is our 3D spline describing cost, N is a 3D histogram of the whitened log-RGB re-
flectance in our training data, and J(·) is a smoothness penalty (the thin-plate spline smooth-
ness energy, made more robust by taking its square root). The smoothness multiplier λ is
tuned through cross-validation. As in our parsimony prior, we use whitened log-reflectance
to address the correlation between channels, which is necessary as our smoothness term is
isotropic. A visualization of our prior can be seen in Figure 2.7.

During inference, we maximize the likelihood of the color reflectance image R by mini-
mizing its cost under our learned model:

ga(R) =
∑
i

F(WRRi) (2.23)

where F(WRRi) is the value of F at the coordinates specified by the 3-vector WRi, the
whitened reflectance at pixel i (WR is the same as in Section 2.2.2). To make this function
differentiable, we compute F(·) using trilinear interpolation.

We trained our absolute color prior on the MIT Intrinsic Images dataset [35], and used
that learned model in all experiments shown in this paper. However, the MIT dataset is
very small and this absolute prior contains very many parameters (hundreds, in contrast to
our other priors which are significantly more constrained), which suggests that we may be
overfitting to the small set of reflectances in the MIT dataset. To address this concern, we
trained an additional version of our absolute prior on the color reflectances in the OpenSur-
faces dataset [14], which is a huge and varied dataset that is presumably a more accurate
representation of real-world reflectances. Both models can be seen in Figure 2.7, where we
see that the priors we learn for each dataset are somewhat different, but that both prefer
lighter, desaturated reflectances. We ran some additional experiments using our OpenSur-
faces model instead of our MIT model (not presented in this dissertation), and found that
the outputs of each model were virtually indistinguishable. This is a testament to the ro-
bustness of our model, and suggests that we are not overfitting to the color reflectances in
the MIT dataset.
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(a) Training data (b) PDF (c) Samples

(d) Training data (e) PDF (f) Samples

Figure 2.7: A visualization of our “absolute” prior on color reflectance. We train two versions
of our prior, one on the MIT Intrinsic Images dataset [35] that we use in our experiments (top
row) and one on the OpenSurfaces dataset for comparison [14] (bottom row). In the first-
column we have the log-RGB reflectance pixels in our training set, and in the second column
we have a visualization of the 3D spline PDF that we fit to that data. In the third column
we have samples from the PDF, where the x axis is sorted by cost (y axis is random). For
both datasets, our model prefers less saturated, more earthy or subdued colors, and abhors
brightly lit neon-like colors or very dark colors — the high-cost reflectances often do not
even look like paint, but instead appear glowing and luminescent.

2.3 Priors on Shape

Our prior on shape consists of four components: 1) An assumption of smoothness (that
shapes tend to bend rarely), which we will model by minimizing the variation of mean
curvature. 2) An assumption of isotropy of the orientation of surface normals (that shapes
are just as likely to face in one direction as they are another) which reduces to a well-
motivated “fronto-parallel” prior on shapes. 3) An prior on the orientation of the surface
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normal near the boundary of masked objects, as shapes tend to face outward at the occluding
contour. 4) An optional prior that the shape should resemble some noisy or incomplete
external observation, such as an estimate of depth derived from stereo or a depth sensor.
Formally, our shape prior f(Z) is a weighted combination of four costs:

f(Z) = λkfk(Z) + λifi(Z) + λcfc(Z) + λofo(Z, Ẑ) (2.24)

where fk(Z) is our smoothness prior, fi(Z) is our isotropy prior, fc is our bounding contour
prior, and fo(Z, Ẑ) encourages Z to be similar to some observation Ẑ, all of which will be
explained in detail in the following sections. The λ multipliers are learned through cross-
validation on the training set.

Most of our shape priors are imposed on intermediate representations of shape, such
as mean curvature or surface normals. This requires that we compute these intermediate
representations from a depth map, calculate the cost and the gradient of cost with respect to
those intermediate representations, and backpropagate the gradients back onto the shape. In
the supplementary material we explain in detail how to efficiently compute these quantities
and backpropagate through them.

2.3.1 Smoothness

There has been much work on modeling the statistics of natural shapes [42, 77], with one
overarching theme being that regularizing some function of the second derivatives of a surface
is effective. However, this past work has severe issues with invariance to out-of-plane rotation
and scale. Working within differential geometry, we present a shape prior based on the
variation of mean curvature, which allows us to place smoothness priors on Z that are
invariant to rotation and scale.

To review: mean curvature is the divergence of the normal field. Planes and soap films
have 0 mean curvature everywhere, spheres and cylinders have constant mean curvature
everywhere, and the sphere has the smallest total mean curvature among all convex solids
with a given surface area [37]. See Figure 2.8 for a visualization. Mean curvature is a
measure of curvature in world coordinates, not image coordinates, so (ignoring occlusion)
the marginal distribution of H(Z) is invariant to out-of-plane rotation of Z — a shape is
just as likely viewed from one angle as from another. In comparison, the Laplacian of Z and
the second partial derivatives of Z can be made large simply due to foreshortening, which
means that priors placed on these quantities [77] would prefer certain shapes simply due to
the angle from which those shapes are observed — clearly undesirable.

But priors on raw mean curvature are not scale-invariant. Were we to minimize |H(Z)|,
then the most likely shape under our model would be a plane, while spheres would be
unlikely. Were we to minimize |H(Z)− α| for some constant α, then the most likely shape
under our model would be a sphere of a certain radius, but larger or smaller spheres, or
a resized image of the same sphere, would be unlikely. Clearly, such scale sensitivity is an
undesirable property for a general-purpose prior on natural shapes. Inspired by previous work



CHAPTER 2. SIRFS 22

(a) some shape Z (b) mean curvature H(Z)

Figure 2.8: A visualization of a shape and its mean curvature (blue = positive, red =
negative, white = 0). Planes and soap films have 0 mean curvature, spheres and cylinders
have constant mean curvature, and mean curvature varies where shapes bend.

on minimum variation surfaces [60], we place priors on the local variation of mean curvature.
The most likely shapes under such priors are surfaces of constant mean curvature, which
are well-studied in geometry and include soap bubbles and spheres of any size (including
planes). Priors on the variation of mean curvature, like priors on raw mean curvature, are
invariant to rotation and viewpoint, as well as concave/convex inversion.

Mean curvature is defined as the average of principle curvatures: H = 1
2
(κ1 + κ2). It can

be approximated on a surface using filter convolutions that approximate first and second
partial derivatives, as show in [15].

H(Z) =
(1 + Z2

x)Zyy − 2ZxZyZxy +
(
1 + Z2

y

)
Zxx

2
(
1 + Z2

x + Z2
y

)3/2 (2.25)

In Section 2.3.2 we detail how to calculate and differentiate H(Z) efficiently. Our smoothness
prior for shapes is a Gaussian scale mixture on the local variation of the mean curvature of
Z:

fk(Z) =
∑
i

∑
j∈N(i)

c (H(Z)i −H(Z)j ;αk, σk) (2.26)

Notation is similar to Equation 2.4: N(i) is the 5 × 5 neighborhood around pixel i, H(Z)
is the mean curvature of shape Z, and H(Z)i − H(Z)j is the difference between the mean
curvature at pixel i and pixel j. c (· ;α, σ) is defined in Equation 2.5, and is the negative
log-likelihood (cost) of a discrete univariate Gaussian scale mixture (GSM), parametrized
by α and σ, the mixing coefficients and standard deviations, respectively, of the Gaussians
in the mixture. The mean of the GSM is 0, as the most likely shapes under our model
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(a) Smoothness (b) Samples

Figure 2.9: To encourage shapes to be smooth, we model the variation in mean curvature of
shapes using a Gaussian scale mixture, shown in 2.9(a). In 2.9(b) we show patches of shapes
in our training data, sorted from least costly (upper left) to most costly (lower right). Likely
shapes under our model look like soap-bubbles, and unlikely shapes look contorted.

should be smooth. We set M = 40 (the GSM has 40 discrete Gaussians), and αk and σk
are learned from our training set using expectation-maximization. The log-likelihood of our
learned model can be seen in Figure 2.9(a), and the likelihoods it assigns to different shapes
can be visualized in Figure 2.9(b). The learned GSM is very heavy tailed, which encourages
shapes to be mostly smooth, and occasionally very non-smooth — or equivalently, our prior
encourages shapes to bend rarely.

2.3.2 Mean Curvature

The definition of our smoothness priors on shapes in Section 2.3.1 is somewhat complicated,
as we are placing priors on H(Z), and intermediate representation of Z, rather than on
Z itself. We must therefore be able to efficiently compute H(Z), and backpropagate the
gradient of some loss defined with respect to H(Z) back onto Z.

Mean curvature on a surface is a function of the first and second partial derivatives of
that surface.

H(Z) =
(1 + Z2

x)Zyy − 2ZxZyZxy +
(
1 + Z2

y

)
Zxx

2
(
1 + Z2

x + Z2
y

)3/2 (2.27)
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To calculate this for a discrete depth map, we will first approximate the partial derivatives
using filter convolutions.

Zx = Z ∗ hx3 , Zy = Z ∗ hy3 (2.28)

Zxx = Z ∗ hxx3 , Zyy = Z ∗ hyy3 , Zxy = Z ∗ hxy3

hx3 =
1

8

 1 0 – 1
2 0 – 2
1 0 – 1

 , hy3 =
1

8

 1 2 1
0 0 0

– 1 – 2 – 1


hxy3 =

1

4

 1 0 – 1
0 0 0

– 1 0 1

 , hyy3 =
1

4

 1 2 1
– 2 – 4 – 2

1 2 1

 , hxx3 =
1

4

 1 – 2 1
2 – 4 2
1 – 2 1


We then compute the following intermediate “images”, and use them to compute H(Z).

M =
√

1 + Z2
x + Z2

y

N = (1 + Z2
x)Zyy − 2ZxZyZxy + (1 + Zy2)Zxx

D = 2M3

H(Z) = N/D (2.29)

When computing H(Z), we also compute the following, which are stored until after the loss
function with respect to H(Z) has been calculated, at which point they will be used to
backpropagate the gradient of the loss function using the chain rule.

Fx = 2(ZxZyy − ZxyZy)−
3ZxN

M2

Fy = 2(ZxxZy − ZxZxy)−
3ZyN

M2

Fxx = 1 + Z2
y

Fyy = 1 + Z2
x

Fxy = −2ZxZy (2.30)

Given f(H(Z)) and∇H(Z)f , a loss function and the gradient of that loss function with respect
to H(Z), we can calculate ∇Zf , the gradient of the loss with respect to Z, as follows:

B =
∇H(Z)f

D
(2.31)

∇Zf = (BFx) ? h
x
3 + (BFy) ? h

y
3

+ (BFxx) ? h
xx
3 + (BFyy) ? h

yy
3 + (BFxy) ? h

xy
3

Where adjacent variables are component-wise multiplication of two images, / is component-
wise division, ∗ is convolution and ? is cross-correlation.

This allows us to compute an arbitrary prior on H(Z) and efficiently compute the gradient
of Z with respect to that prior, which is necessary for the gradient-based optimization we
will perform in Section 2.6.
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(a) An isotropic shape (b) Our isotropy prior

Figure 2.10: We assume the surfaces of shapes to be isotropic — equally likely to face in
any orientation, like in a sphere. However, observing an isotropic shape imposes a bias,
as observed surfaces are more likely to face the observer than to be perpendicular to the
observer (as shown by the red gauge figure “thumbtacks” placed on the sphere in 2.10(a)).
We undo this bias by imposing a prior on N z, shown in 2.10(b), which coarsely resembles
our training data.

2.3.3 Surface Isotropy

Our second prior on shapes is motivated by the observation that shapes tend to be oriented
isotropically in space. That is, it is equally likely for a surface to face in any direction. This
assumption is not valid in many settings, such as man-made environments (which tend to
be composed of floors, walls, and ceilings) or outdoor scenes (which are dominated by the
ground-plane). But this assumption is more true for generic objects floating in space, which
tend to resemble spheres (whose surface orientations are truly isotropic) or sphere-like shapes
— though there is often a bias on the part of photographers towards imaging the front-faces
of objects. Despite its problems, this assumption is still effective and necessary.

Intuitively, one may assume that imposing this isotropy assumption requires no effort: if
our prior assumes that all surface orientations are equally likely, doesn’t that correspond to
a constant cost for all surface orientations? However, this ignores the fact that once we have
observed a surface in space, we have introduced a bias: observed surfaces are much more
likely to face the observer (N z ≈ 1) than to be perpendicular to the observer (N z ≈ 0). We
must therefore impose an isotropy prior to undo this bias.

We will derive our isotropy prior analytically. Assume surfaces are oriented uniformly, and
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that the surfaces are observed under orthogonal perspective with a view direction (0, 0,−1).
It follows that all N z (the z-component of surface normals, relative to the viewer) are dis-
tributed uniformly between 0 and 1. Upon observation, these surfaces (which are assumed
to have identical surface areas) have been foreshortened, such that the area of each surface
in the image is N z. Given the uniform distribution over N z and this foreshortening effect,
the probability distribution over N z that we should expect at a given pixel in the image is
proportional to N z. Therefore, maximizing the likelihood of our uniform distribution over
orientation in the world is equivalent to minimizing the following in the image:

fi(Z) = −
∑
x,y

log
(
N z
x,y(Z)

)
(2.32)

Where N z
x,y(Z) is the z-component of the surface normal of Z at position (x, y) (defined in

Section 2.5).
Though this was derived as an isotropy prior, the shape which maximizes the likelihood

of this prior is not isotropic, but is instead (because of the nature of MAP estimation) a
fronto-parallel plane. This gives us some insight into the behavior of this prior — it serves
to as a sort of “fronto-parallel” prior. This prior can therefore be thought of as combating
the bas-relief ambiguity [11] (roughly, that absolute scale and orientation are ambiguous),
by biasing our shape estimation towards the fronto-parallel members of the bas-relief family.

Our prior on N z is shown in Figure 2.10(b) compared to the marginal distribution of N z

in our training data. Our model fits the data well, but not perfectly. We experimented with
learning distributions on N z empirically, but found that they worked poorly compared to
our analytical prior. We attribute this to the aforementioned photographer’s bias towards
fronto-parallel surfaces, and to data sparsity when N z is close to 0.

It is worth noting that − log (N z) is proportional to the surface area of Z. Our prior on
slant therefore has a helpful interpretation as a prior on minimal surface area: we wish to
minimize the surface area of Z, where the degree of the penalty for increasing Z’s surface
area happens to be motivated by an isotropy assumption. This notion of placing priors on
surface area has been explored previously [29], but not in the context of isotropy. And of
course, this connection relates our model to the study of minimal surfaces in mathematics
[37], though this connection is somewhat tenuous as the fronto-parallel planes favored by
our model are very different from classical minimal surfaces such as planes and soap films.

2.3.4 The Occluding Contour

The occluding contour of a shape (the contour that surrounds the silhouette of a shape) is
a powerful cue for shape interpretation [49] which often dominates shading cues [59], and
algorithms have been presented for coarsely estimating shape given contour information [19].
At the occluding contour of an object, the surface is tangent to all rays from the vantage
point. Under orthographic projection (which we assume), this means the z-component of
the normal is 0, and the x and y components are determined by the contour in the image. In
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(a) A cropped object an its normals (b) Our occluding contour prior

Figure 2.11: In 2.11(a) we have an image and surface normals of a subset of a cup, in our
dataset. The side of this cup are “limbs”, points where the surface normal faces outward
and is perpendicular to the occluding contour, while the top of the cup are “edges”, sharp
discontinuities where the surface is oriented arbitrarily. Our heavy-tailed prior over surface
orientation at the occluding contour in 2.11(b) models the behavior of limbs, but is robust
to the outliers caused by edges.

principle, this property is absolutely true, but in practice the occluding contour of a surface
tends to be composed of limbs (points where the surface is tangent to rays from the vantage
point, like the smooth side of a cylinder) and edges (an abrupt discontinuity of the surface,
like the top of a cylinder or the edge of a piece of paper) [57]. See Figure 2.11(a) for an
example of a shape which contains both phenomena. Of course, this taxonomy is somewhat
false — all edges are limbs, but some are so small that they appear to be edges, and some
are just small enough relative to the image resolution that the “limb” assumption begins to
break down.

We present a “soft” version of a limb constraint, one which captures the “limb”-like
behavior we expect to see but which can be violated by edges or small limbs. Because
our dataset consists of masked objects, identifying the occluding contour C is trivial (see
Figure 2.12(a)). For each point i on C, we estimate ni, the local normal to the occluding
contour in the image plane. Using those we regularize the surface normals in Z along the
boundary by minimizing the following loss:

fc(Z) =
∑
i∈C

(1− (Nx
i (Z)nxi +Ny

i (Z)nyi ))
γc (2.33)
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(a) occluding contour normals (b) shape-from-contour output

Figure 2.12: A subset of our model that includes only our priors on shape is equivalent to a
shape-from-contour model. Given only the normals of the silhouette of the object in 2.12(a),
we can produce the coarse estimate of the shape of the object in 2.12(b).

Where N(Z) is the surface normal of Z, as defined in Section 2.5. We set γc = 0.75, which
fits the training data best, and which performs best in practice. The inner product of ni and
Ni (both of which are unit-norm) is 1 when both vectors are oriented in the same direction,
in which case the loss is 0. If the normals do not agree, then some cost is incurred. This
cost corresponds to a heavy-tailed distribution (shown in Figure 2.11(b)) which encourages
the surface orientation to match the orientation of the occluding contour at limbs, allows
surface normals to violate this assumption at edges.

This occluding-contour prior, when combined with our priors on smooth and isotropic
shapes, allows us to easily define an ablation of our entire model that corresponds to a
shape-from-contour algorithm: we simply optimize with respect to these shape priors, and
ignore our priors on reflectance and illumination, thereby ignoring all but the silhouette of
the input image. An example of the output of our shape-from-contour model can be seen
in Figure 2.12(b), and this model is evaluated quantitatively against our complete SIRFS
model in Section 2.7.

2.3.5 Noisy Shape Observation

One of the reasons that using shading cues to recover shape (as we are attempting here) is
challenging, is that shading is a fundamentally poor cue for low-frequency (coarse) shape
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variation. Shading is directly indicative of only the shape of a point relative to its neighbors:
fine-scale variations in shape produce sharp, localized changes in an image, while coarse-scale
shape variations produce very small, subtle changes across an entire image. Both algorithms
[11] and humans [50] therefore make errors in estimating coarse depth when using only
shading. Bas relief sculptures take advantage of this by conveying the impression of a rich,
deep 3D scene, using only the shading produced by a physically shallow object.

To deal with this issue, we will construct our prior on shape to allow for an external ob-
servation of shape to be incorporated into inference. This observation may be produced by
a stereo algorithm, or by some depth sensor such as a laser rangefinder or the Kinect. These
depth sensors or stereo algorithms often produce depth maps which are noisy or incom-
plete, or most often blurry — lacking fine-scale shape detail. Because of the complementary
strengths of stereo and shading, combining the two can often yield very accurate results
[16, 5].

We will construct a loss function to encourage our recovered depth Z to resemble the raw
sensor depth Ẑ:

fo(Z, Ẑ) =
∑
i

(
((Z ∗ b(σZ))i − Ẑi)2 + ε2

) γo
2

(2.34)

This is simply a hyperlaplacian distribution with an exponent of γo on the difference between
(Z ∗ b(σZ)) and Ẑ at every pixel, with ε added in to make the loss differentiable everywhere.
b(σZ) is a 2D Gaussian filter with a standard deviation of σZ , and ∗ is convolution, so
(Z ∗ b(σZ))i is the value of a blurry version of our shape estimate Z at pixel location i. We
tune γo on the training set, which sets it to ∼ 1, and we set ε = 1/100. The robust nature
of this cost encourages Z to resemble Ẑ, while allowing it to occasionally differ drastically.
In our experiments we use Z∗ ∗ b(30) as our Ẑ, which is a reasonably proxy for a stereo
algorithm or low-resolution depth-sensor, and we set σZ = 30 as that value (unsurprisingly)
performs best during cross-validation.

2.4 Priors over Illumination

Because illumination is unknown, we must regularize it during inference. Our prior on
illumination is extremely simple: we fit a multivariate Gaussian to the spherical-harmonic il-
luminations in our training set. During inference, the cost we impose is the (non-normalized)
negative log-likelihood under that model:

h(L) = λL(L− µL)TΣ−1L (L− µL) (2.35)

where µL and ΣL are the parameters of the Gaussian we learned, and λL is the multiplier
on this prior (learned on the training set).

We use a spherical-harmonic (SH) model of illumination, so L is a 9 (grayscale) or 27
(color, 9 dimensions per RGB channel) dimensional vector. In contrast to traditional SH
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(a) “Laboratory” Data/Samples (b) “Natural” Data/Samples

Figure 2.13: We use two datasets: the “laboratory”-style illuminations of the MIT intrinsic
images dataset [35] which are harsh, mostly-white, and well-approximated by point sources,
and a dataset of “natural” illuminations, which are softer and much more colorful. Shown
here are some illuminations from the training sets of our two datasets, and samples from
a multivariate Gaussian fit to each training set (our illumination prior from Section 2.4),
rendered on Lambertian spheres. In each visualization the illuminations are sorted from
least costly (upper left) to most costly (lower right) according to either our “Laboratory” or
“Natural” illumination priors.

illumination, we parametrize log-shading rather than shading. This choice makes optimiza-
tion easier as we don’t have to deal with “clamping” illumination at 0, and it allows for easier
regularization, as the space of log-shading SH illuminations is surprisingly well-modeled by
a simple multivariate Gaussian while the space of traditional SH illumination coefficients is
not.

See Figure 2.13 for examples of SH illuminations in our different training sets, as well as
samples from our model. The illuminations in Figure 2.13 come from two different datasets
(see Section 2.7) for which we build two different priors. We see that our samples look
similar to the illuminations in the training set, suggesting that our model fits the data well.
The illuminations in these visualizations are sorted by their likelihoods under our priors,
which allows us to build an intuition for what these illumination priors encourage. More
likely illuminations tend to be lit from the front and are usually less saturated and more
ambient, while unlikely illuminations are often lit from unusual angles and tend to exhibit
strong shadowing and colors.

2.5 Linearization and Rendering

SIRFS assumes a rendering engine S(Z,L), which takes as input some depth map Z and
some spherical harmonic illumination model L and produces a log-shading image. Such a
rendering engine is necessary to model shading, as it allows us to relate the shape Z to
the reflectance image R. For S(Z,L) we will assume Lambertian reflectance using spherical
harmonic illumination, though S(Z,L) is entirely modular, and so the specific choice of what
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S(·) to use has little to do with the rest of SIRFS. The only requirement for S(·) is that we
can compute it and its analytical derivative efficiently, as our gradient-based optimization
requires that we be able to backpropagate gradients with respect to S(Z,L) onto Z and
L. In this section we will detail how to calculate S(Z,L) and backpropagate across S(Z,L)
efficiently, for the purpose of calculating A and backpropagating losses on A back onto Z .
First, we convert Z into a set of surface normals:

Nx =
Z ∗ hx3
B

, Ny =
Z ∗ hy3
B

, N z =
1

B

B =

√
1 + (Z ∗ hx3)2 + (Z ∗ hy3)

2 (2.36)

where ∗ is convolution. We also compute the following:

F11 = (1−Nx ×Nx)×N z

F22 = (1−Ny ×Ny)×N z

F13 = − (Nx ×N z ×N z)

F23 = − (Ny ×N z ×N z)

F12 = − (Nx ×Ny ×N z) (2.37)

where × is component-wise multiplication of two images. Let us look at the surface normal
at one pixel: ni = [Nx

i , N
y
i , N

z
i ]T. Rendering that point with spherical harmonics is:

S(ni, L) = [ni; 1]TM[ni; 1] (2.38)

M =


c1L9 c1L5 c1L8 c2L4

c1L5 −c1L9 c1L6 c2L2

c1L8 c1L6 c3L7 c2L3

c2L4 c2L2 c2L3 c4L1 − c5L7


c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708

Note that S(ni, L) is the log-shading at pixel i, not the shading. This is different from the
traditional usage of spherical harmonic illumination. Directly modeling log-shading makes
optimization easier by guaranteeing that shading is greater than 0 without needing to clamp
shading at 0, as is normally done. The gradient of the log-shading at this point with respect
to the surface normal is:

Bi = ∇niS(ni, L) = 2nT
i M[:, 1 : 3]

Where B is a three-channel image, where Bx is the gradient of S with respect to Nx, etc.
Given the log-shading, we can infer what the log-albedo at this point must be:

Ai = Ii − S(ni, L) (2.39)
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After calculating g(A) and ∇Ag(A), (or prior on reflectance, as described in Section 2.2) we
can backpropagate the gradient onto Z as follows:

DS = −∇Ag(A) (2.40)

Dx = Bx × F11 +By × F12 +Bz × F13

Dy = Bx × F12 +By × F22 +Bz × F23

∇Zg(A) = (DS ×Dx) ? h
x
3 + (DS ×Dy) ? h

y
3

where × is component-wise multiplication of two images and ? is cross-correlation.
Let us construct the matrix J , the Jacobian matrix of all partial derivatives of S with

respect to L, which is a n by 9 matrix (where n is the number of pixels in S), where row i is:

Ji = [c4, 2c2N
y
i , 2c2N

z
i , 2c2N

x
i , 2c1N

x
i N

y
i , 2c1N

y
i N

z
i ,

c3N
z
i N

z
i − c5, 2c1Nx

i N
z
i , c1(N

x
i N

x
i −N

y
i N

y
i )]

We can use this matrix to backpropagate the gradient of the loss with respect to S onto L,
as follows:

∇Lg(A) = JTDS (2.41)

We have described how to linearize a depth map, compute a log-shading image of that
linearization with respect to a grayscale spherical-harmonic model of illumination, and back-
propagate a gradient with respect to that shading image onto the depth map and the illu-
mination model. To do the same for a color image, we simply do the same procedure three
times — though for efficiency’s sake we need only linearize the depth map once.

2.6 Optimization

To estimate shape, illumination, and reflectance, we must solve the optimization problem
in Equation 2.2. This is a challenging optimization problem, and naive gradient-based opti-
mization with respect to Z and L fails badly. We therefore present an effective multi-scale
optimization technique, which is similar in spirit to multigrid methods [75], but extremely
general and simple to implement. We will describe our technique in terms of optimizing
a(X), where a(·) is some loss function and X is some signal.

Let us define G, which constructs a Gaussian pyramid from a signal. Because Gaussian
pyramid construction is a linear operation, we will treat G as a matrix. Instead of minimizing
a(X) directly, we minimize b(Y ), where X = GTY :

[`,∇Y `] = b(Y ) : (2.42)

X ← GTY // reconstruct signal

[`,∇X`]← a(X) // compute loss & gradient

∇Y `← G∇X// backpropagate gradient
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We initialize Y to a vector of all 0’s, and then solve for X̂ = GT (arg minY b(Y )) using
L-BFGS. Any arbitrary gradient-based optimization technique could be used, but L-BFGS
worked best in our experience.

The choice of the filter used in constructing our Gaussian pyramid is crucial. We found
that 4-tap binomial filters work well, and that the choice of the magnitude of the filter dra-
matically affects multiscale optimization. If the magnitude is small, then the coefficients
of the upper levels of the pyramid are so small that they are effectively ignored, and op-
timization fails (and in the limit, a filter magnitude of 0 reduces our model to single-scale
optimization). Conversely, if the magnitude is large, then the coarse scales of the pyramid
are optimized and the fine scales are ignored. The filter that we found worked best is:
1√
8
[1, 3, 3, 1], which has twice the magnitude of the filter that would normally be used for

Gaussian pyramids. This increased magnitude biases optimization towards adjusting coarse
scales before fine scales, without preventing optimization from eventually optimizing fine
scales. This filter magnitude does not appear to be universally optimal — different tasks
appear to have different optimal filter magnitudes. Note that this technique is substantially
different from standard coarse-to-fine optimization, in that all scales are optimized simulta-
neously. As a result, we find much lower minima than standard coarse-to-fine techniques,
which tend to keep coarse scales fixed when optimizing over fine scales. Optimization is also
much faster than comparable coarse-to-fine techniques.

To optimizing Equation 2.2 we initialize Z and L to ~0 ( L = ~0 is equivalent to an entirely
ambient, white illumination) and optimize with respect to a vector that is a concatenation
of GTZ and a whitened version of L. We optimize in the space of whitened illuminations
because the Gaussians we learn for illumination mostly describe a low-rank subspace of SH
coefficients, and so optimization in the space of unwhitened illumination is ill-conditioned.
We pre-compute a whitening transformation for ΣL and µL, and during each evaluation of
the loss in gradient descent we unwhiten our whitened illumination, compute the loss and
gradient, and backpropagate the gradient onto the whitened illumination. After optimizing
Equation 2.2 we have a recovered depth map Ẑ and illumination L̂, with which we calculate
a reflectance image R̂ = I − S(Ẑ, L̂). When illumination is known, L is fixed. Optimizing
to near-convergence (which usually takes a few hundred iterations) for a 1-2 megapixel
grayscale image takes 1-5 minutes on a 2011 Macbook Pro, using a straightforward Matlab/C
implementation. Optimization takes roughly twice as long if the image is color.

We use this same multiscale optimization scheme with L-BFGS to solve the optimization
problems in Equations 2.20 and 2.22, though we use different filter magnitudes for the
pyramids. Naive single-scale optimization for these problems works poorly.

2.6.1 Efficient Computation

Our model is fairly computationally expensive. Evaluating our loss function and its gradient
takes close to a second, and optimization requires that the loss be evaluated hundreds of
times. To make this model more tractable, we use some additional tricks to speed up the
computation of the loss function.
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First, our smoothness priors for reflectance and shape require repeatedly computing the
negative log-likelihood of a Gaussian scale mixture. Computing this naively is very expensive,
but it can be made extremely efficient by pre-computing a lookup table of the negative log-
likelihood, and indexing into that to compute the gradient and its loss. For the multivariate
GSM used in our smoothness prior for color reflectance, we can construct a lookup table of
negative log-likelihood with respect to Mahalanobis distance under the covariance matrix Σ
in our GSM.

When computing our smoothness priors, it’s often fastest to pre-compute the pairs of
pixels within all 5×5 windows, and construct a sparse matrix where for each pair, we have a
row in which the column corresponding to one pixel in the pair is set to 1 and the the column
corresponding to the other pixel is set to −1. With this, a vector of pairwise distances
between pixels can be computed efficiently with one sparse matrix-vector product. Also,
expressing this pairwise distance computation as a matrix multiplication allows gradients
to be easily backpropagated from the vector of differences onto the raw pixels by simply
multiplying the gradient vector by the transpose of this matrix.

The prior for absolute reflectance can be computed efficiently using the same bilateral-grid
trick used for entropy: splat the signal into a histogram, compute the loss of the histogram,
and then backpropagate onto the data. For even more efficiency, we can use the same his-
togram for both entropy and absolute, which means we only need to compute one histogram
per gradient descent iteration, and we need only backpropagate from the histogram to the
data once.

2.7 MIT-Berkeley Intrinsic Images Dataset

Quantitatively evaluating the accuracy of our model is challenging, as there are no pre-
existing datasets with ground-truth shape, surface normals, shading, reflectance, and illu-
mination. Thankfully, the MIT Intrinsic Images dataset [35] provides ground-truth shading
and reflectance for 20 objects (one object per image), and includes many additional im-
ages of each object under different illumination conditions. Given this, we have created the
MIT-Berkeley Intrinsic Images dataset, an augmented version of the MIT Intrinsic Images
dataset in which we have used photometric stereo on the additional images of each object to
estimate the shape of each object and the spherical harmonic illumination for each image.
Some example objects in our dataset can be seen in Figures 2.14 and 2.15. In all of our
experiments, we use the following test-set: cup2, deer, frog2, paper2, pear, potato, raccoon,
sun, teabag1, turtle. The other 10 objects are used for training.

2.7.1 Photometric Stereo

Now we will detail how we recover “ground-truth” shape and spherical harmonic illumination
for each image of each object in our dataset. This is a simple photometric stereo algorithm,
in which we optimize over shapes and illuminations to minimize the absolute error between
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(a) Depth map (b) Shading

(c) Surface normals (d) Reflectance (e) images

Figure 2.14: An object from our dataset. In 2.14(a), 2.14(b), 2.14(c), and 2.14(d) we have our
“ground-truth” shape, shading, surface normals, and reflectance, respectively. The shading
and reflectance images come from the MIT Intrinsic Images dataset [35], and the shape and
surface normals were produced by our photometric stereo algorithm. In 2.14 we have three
columns, where the first contains the images from the MIT Intrinsic Images dataset [35],
the third contains the illuminations recovered by our photometric stereo algorithm for each
image, and the second column contains renderings of our ground-truth for each illumination,
which demonstrate that our recovered models are reasonable. The second to last row of
Figure 2.14 is the “shading” image from the MIT dataset, and the last row is the “diffuse”
image, which is used as input to our model. The illumination on the last row is therefore
what is referred to as the “ground-truth” illumination for this scene.
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(a) Depth map (b) Shading

(c) Surface normals (d) Reflectance (e) images

Figure 2.15: Another object from our dataset, shown in the same format as Figure 2.14. Note
that our illumination model cannot capture the cast shadows in the input images, which is
why our renderings are shadowless.

renderings of our dataset and the actual images in our dataset. Absolute error is used to
give us robustness to errors due to shadows and specularities, which our rendering engine
(and therefore, our dataset) do not consider or address properly. Recovered shapes and
illuminations were then cleaned up by hand to address bas-relief ambiguity issues[11]. We
treat each RGB channel of each image as a separate image.

To account for varying reflectance, we compute a “shading” image for each image on our
dataset.

s∗i,j = exp(Ii,j −Ri) (2.43)

We will now detail each step in the inner loop of our iterative photometric stereo algo-
rithm. We first take each current shape estimate Z, and linearize it to get a set of fixed
surface normals. For each image j, we solve for the SH illumination that minimizes absolute
error between the rendering and the shading image:

Lj ← arg min
L

∑
i

| exp(S(ni, L))− s∗i,j| (2.44)

This optimization problem is solved using Iteratively Reweighted Least-Squares. We then
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fix each image’s illumination Lj, and optimize over each object’s normals ni.

ni ← arg min
n

∑
j

| exp(S(n, Lj))− s∗i,j| (2.45)

This optimization is done with L-BFGS. In this step, the normals are decoupled, and so
surface integrability is not enforced. Given this estimate of surface normals, we can compute
a integrable surface Z which approximates this normal field using least-squares:

Z ← arg min
Z

∑
i

(
Z ∗ hx − nxi

nzi

)2

+

(
Z ∗ hy − nyi

nzi

)2

These three optimization steps are repeated until convergence (30 iterations). For the
first 10 iterations, we constrain all of the illuminations belonging to the same object to
be scaled and shifted versions of each other, but for the next 20 iterations we allow each
illumination for every image to vary freely. The result of this algorithm is an estimate of Z
for each object and an estimate of L for each RGB channel of every image.

This photometric stereo algorithm still suffers from Bas-Relief ambiguity[11] issues, de-
spite the abundance of data. We therefore manually adjust each recovered Z over the three
parameters of the Bas-Relief ambiguity by hand. Also, some regions of Z are clearly in-
correct due to shadows. These regions are manually removed (and are not included in the
evaluation of our error metrics which concern Z). After these manual tweaks to each shape,
we update the set of illuminations to minimize absolute error once again. The two “cup” and
“teabag” images did not have discriminative enough shape features for photometric stereo
to recover reasonable second-order spherical harmonic illuminations, so for those objects we
instead recover only first-order spherical harmonic illumination parameters (equivalent to
point-light + ambient illumination), and set the other coefficients to 0.

The MIT Intrinsic Images dataset was not acquired with the goal of having the product
of the “shading” and “reflectance” images be exactly equal to the diffuse image, which our
model (and our baseline models) assume. That is, a lambertian rendering of our recovered
shape and illumination resembles a scaled version of the original “shading” image. We
correct for this by adjusting the brightness of the “shading” image such that it matches our
rendering in a least-squares sense, and we use this “corrected” shading image in all of our
experiments.

Note that the optimization tools we use for our photometric stereo algorithm are com-
pletely disjoint from the optimization techniques used by algorithm in our work, despite the
fact that those techniques could have been adapted to do photometric stereo. This was done
intentionally to dispel any concerns that our results might be good simply because they were
obtained using similar techniques as our photometric stereo algorithm.

Examples of our recovered shapes and illuminations, as well as the shading and reflectance
images already contained in the MIT Intrinsic Images dataset, can be seen in Figures 2.14
and 2.15.
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2.7.2 Error Metrics

An additional difficulty in evaluation is the choice of error metrics. Constructing error
metrics for specific intrinsic scene properties such as a depth map or a reflectance image is
challenging, as naive choices such as mean-squared-error often correspond very poorly with
the perceptual salience of an error. Additionally, constructing a single error metric that
describes all errors in each intrinsic scene property is difficult. We therefore present six
different error metrics that have been designed to capture different kinds of important errors
for each intrinsic scene property. We will use the geometric mean of six error metrics: two for
shape, one for illumination, one for shading, one for reflectance, and one for high-frequency
shading and reflectance.

Our first shape error metric is:

Z-MAE(Ẑ, Z∗) =
1

n
min
β

∑
x,y

∣∣∣Ẑx,y − Z∗x,y + b
∣∣∣ (2.46)

This is the shift-invariant absolute error between the estimated shape Ẑ and the ground-
truth shape Z∗. This error metric is sensitive to all errors in shape estimation, except for
the absolute distance of the shape from the viewer (which is unknowable under orthographic
projection). It can be computed efficiently by setting b to the median of Ẑ − Z∗.

Our second shape error metric is:

N -MAE(N̂ ,N∗) =
1

n

∑
x,y

arccos
(
N̂x,y ·N∗x,y

)
(2.47)

This is the mean error between the normal field N̂ of our estimated shape Ẑ and the normal
field N∗ of the ground-truth shape Z∗, in radians. This metric is most sensitive to very
fine-scale errors in Ẑ, which is what determines surface orientation.

For illumination, our error metric is:

L -MSE(L̂, L∗) =
1

n
min
α

∑
x,y

||αV (L̂)x,y − V (L∗)x,y||22 (2.48)

Which is the scale-invariant MSE of a rendering of our recovered illumination L̂ and the
ground-truth illumination L∗. V (L) is a function that renders the spherical harmonic il-
lumination L on a sphere and returns the log-shading. V (L)x,y is a 3-vector of log-RGB
at position (x, y) in the renderings. The α multiplier makes this error metric invariant to
absolute scaling, meaning that estimating illumination to be twice as bright or half as bright
doesn’t change the error. But because there is only one multiplier rather than individual
scalings for each RGB channel, this error metric is sensitive to the overall color of the illumi-
nant. This choice seems consistent with what we would like: estimating absolute intensity
of an illuminant from a single image is both incredibly difficult and not very useful, but
estimating the color of the illuminant is a reasonable thing to expect from an algorithm, and
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would be useful for many applications (color constancy, relighting, reflectance estimation,
etc). We impose our error metric in the space of visualizations of the illumination rather
than in the space of the actual spherical harmonic coefficients that generated that visualiza-
tion, both because it makes our error metric invariant to the choice of illumination model,
and because we found that often the recovered illumination could look quite similar to the
ground-truth, while having a very different spherical harmonic representation.

For shading and reflectance, we use:

S-MSE(ŝ, s∗) =
1

n
min
α

∑
x,y

∥∥αŝx,y − s∗x,y∥∥22 (2.49)

R-MSE(r̂, r∗) =
1

n
min
α

∑
x,y

∥∥αr̂x,y − r∗x,y∥∥22 (2.50)

These are the scale-invariant MSEs of our recovered shading ŝ = exp(S(Ẑ, L̂)) and reflectance
r̂ = exp(R̂). Just like in L -MSE, we are invariant to absolute scaling of all RGB channels at
once, but not invariant to scaling each channel individually. This makes these error metrics
sensitive to errors in estimating the overall color of the shading and reflectance images, but
invariant to illumination. Note that these error metrics are of shading and reflectance, not of
log-shading and log-reflectance, even though the rest of this work is written almost entirely
in terms of log-intensity. We could have used shift-invariant error metrics in log-intensity
space, but we found these to be too sensitive to errors in dark regions of the image — places
in which we’d expect any algorithm to do worse, simply because there is less signal.

Our final error metric is the metric introduced in conjunction with the MIT intrinsic
images dataset [35], which the authors refer to as LMSE, but which we will call RS-MSE
to minimize confusion with L -MSE. This metric measures error for both reflectance and
shading, and is locally scale-invariant. The intent of the local scale-invariance is to make the
metric insensitive to low-frequency errors in either shading or reflectance. In keeping with
this spirit, we apply this error metric individually to each RGB channel and take the mean
of those three errors as RS-MSE, making this error metric not just robust to low-frequency
error, but robust to most errors in estimating the color of the illumination. This error metric
therefore serves to be somewhat complementary to S-MSE and R-MSE, which are sensitive
to everything except absolute intensity.

RS-MSE is the mean of the local scale-invariant MSE of shading and reflectance, nor-
malized so that an estimate of all zeros has the maximum score of 1:

RS-MSE(ŝ, r̂, s∗, r∗) =
1

2

(
e(ŝ, s∗)

e(ŝ, 0)
+

e(r̂, r∗)

e(r̂, 0)

)
(2.51)

Where e(·) is the sum of the scale-invariant MSE at all local windows w of size 20 × 20,
spaced in steps of 10:

e(x̂, x∗) =
∑
w∈W

min
α
‖αx̂w − x∗w‖

2
2 (2.52)
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As an aside, in our error metrics we repeatedly use scale-invariant MSE, of the form:

min
α
‖αx̂− x∗‖22 (2.53)

The closed-form solution to this problem is:∥∥∥∥( x̂Tx∗x̂Tx̂

)
x̂− x∗

∥∥∥∥2
2

(2.54)

To summarize these individual error metrics, we report an “average” error metric, which
is the geometric mean of the previous six error metrics. For each error metric and the average
metric, we report the geometric mean of error across the test-set images. The use of the
geometric mean prevents the average error from being dominated by individual error metrics
with large dynamic ranges, or by particularly challenging images.

2.7.3 Shape From Shading

For the purposes of comparing SIRFS to intrinsic image techniques, we need a shape-from-
shading technique for producing depth maps from recovered shading images. Thankfully,
our model for recovering shape and albedo given a single image and illumination can easily
be reduced to a model for doing classic shape-from-shading (recovering shape given a single
image and illumination). Our optimization problem becomes:

minimize
Z

λ|I − S(Z,L)|+ f(Z) (2.55)

Where I is the input log-image, and λ is a multiplier that trades off the importance of
the reconstruction terms against the regularizer on Z. f(Z) and S(Z,L) are as they were
defined in SIRFS. Optimization is done using our multiscale optimization algorithm. This
SFS algorithm is similar to past algorithms which optimize over a linearized representation
of a depth map, with the primary difference being our choice of f(Z).

This SFS algorithm is run on the shading images produced by the “intrinsic image”
algorithms we benchmark against. This is a very generous comparison on our part, as we are
effectively giving these other algorithms one-half of the model we present here, and we are
assuming that illumination is known. We used our own shape-from-shading algorithm for
fairness’s sake, as it appears to outperform previous SFS algorithms. This means, however,
that our improvement over these algorithms is not as much a reflection of the effectiveness of
f(Z) in isolation, but is instead a demonstration of the effectiveness of optimizing over f(Z)
and g(A) to jointly recover shape and albedo, as opposed to recovering a shading image and
then recovering shape from that shading image.

2.7.4 Color / Illumination Conditions

Thought the MIT dataset has a great deal of variety in terms of the kinds of objects used,
the illumination in the dataset is very “laboratory”-like — lights are white, and are placed
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(a) Achromatic illumination (b) Chromatic illumination

Figure 2.16: Chromatic illumination dramatically helps shape estimation. Achromatic
isophotes (K-means clusters of log-RGB values) are very elongated, while chromatic isophotes
are usually more tightly localized. Therefore, under achromatic lighting a very wide range
of surface orientations appear similar, but under chromatic lighting only similar orientations
appear similar.

at only a few locations relative to the object. See Figure 2.13(a) for examples of these
“laboratory” illuminations. In contrast, natural illuminations exhibit much more color and
variety: the sun is yellow, outdoor shadows are often tinted blue, man-made illuminants
have different colors, and indirect illumination from colored objects may cause very colorful
illuminations. To acquire some illumination models that are more representative of the vari-
ety seen in the natural world, we took all of the environment maps from the sIBL Archive3,
expanded that set of environment maps by shifting and mirroring them and varying their
contrast and saturation (saturation is only ever decreased, never increased) and produced
spherical harmonic illuminations from the resulting environment maps. After removing sim-
ilar illuminations, the illuminations were split into training and test sets. See Figure 2.13(b)
for examples of these “natural” illuminations. Each object in the MIT dataset was randomly
assigned an illumination (such that training illuminations were assigned to training objects,
etc), and each object was re-rendered under its new illumination, using that object’s ground-
truth shape and reflectance. We will refer to this new pseudo-synthetic dataset of naturally
illuminated objects as our “natural” illumination dataset, and we will refer to the original
MIT images as the “laboratory” illumination dataset. From our experience applying our
model to real-world images, these “natural” illuminations appear to be much more represen-
tative of the sort of illumination we see in uncontrolled environments, though the dataset
is heavily biased towards more colorful illuminations. We attribute this to a photographer’s
bias towards “interesting” environment maps in the sIBL Archive.

3http://www.hdrlabs.com/sibl/archive.html
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2.7.5 Evaluation

Given our dataset, we will evaluate our model on the task of recovering all intrinsic scene
properties from a single image of a masked object, under three different conditions: I: the
input is a grayscale image and the illumination is “laboratory”-like, II: the input is a color
image and the illumination is “laboratory”-like, and III: the input is a color image and the
illumination is “natural”. For all tasks, we use the same training/test split, and for each
task we tune a different set of hyperparameters on the training set (λs, λe, λa, σR, λk, λi, λc, λo,
and λL), and fit a different prior on illumination (as in Section 2.4). Hyperparameters are
tuned using coordinate descent to minimize our “average” error metric for the training set.
For each task, we compare SIRFS against several intrinsic images algorithms (meant to
decompose an image into shading and reflectance components), upon which we’ve run our
previously-detailed shape-from-shading algorithm on the shading image. For the sake of a
generous comparison, the SFS algorithm uses our shape priors, which boosts each baseline’s
performance. We also compare against a “naive” algorithm, which is a baseline in which
Z = ~0 and L = ~0. Because the intrinsic image baselines do not estimate illumination, we use
L = ~0 as their prediction. We were forced to use different baseline techniques for different
tasks, as some baselines do not have code available for running on new imagery, and some
code that was designed for color images crashes when run on grayscale images.

We also compare against several ablations of our model in which components have been
removed: models B-H omit priors by simply setting their λ hyperparameters to 0, and
models I and J omit our multiscale optimization over Z and our whitened optimization over
L respectively. Model K is a shape-from-contour technique, in which only our shape-priors
are non-zero and L = ~0, so the only effective input to the model is the silhouette of the
object (for this baseline, the hyperparameters have been completely re-tuned on the training
set). We also compare against two extensions of SIRFS: model A+L, in which the ground-
truth illumination is known (and fixed during optimization), and model A+S, in which we
provide a blurry version of the ground-truth shape (convolved with a Gaussian kernel with
σ = 30) as input and use our prior from Section 2.3.5 to incorporate that information (in
all other models, that prior is ignored by setting its λ multiplier to 0). Model S shows the
performance of just the blurry ground-truth shape provided as input to model A+S, for
reference. The performance of SIRFS relative to some of these baselines and extensions can
be see in Tables 2.1-2.3, and in Figures 2.17-2.28.

From Tables 2.1-2.3, we see that SIRFS outperforms all baseline techniques. For grayscale
images, the improvement is substantial: our error is roughly half that of the best technique.
For color images under “laboratory” illumination, our recovered shading and reflectance
images are only slightly better than those of the best-performing intrinsic image technique
[33], but our recovered shape and surface normals are significantly better, demonstrating
the value of a unified technique over a piecewise system that first does intrinsic images,
and then does shape from shading. For color images under “natural” illumination, SIRFS
outperforms all baseline models by a very large margin, it is the only model that can rea-
son well about color illumination and (implicitly) color shading. From our ablation study,
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we see that each prior contributes positively to performance, though the improvement we
get from each prior is greater in the grayscale case than in the color/natural case. This
makes sense, as color images under natural illumination contain much more information
than in grayscale images, and so the “likelihood” dominates our priors during inference.
Our ablation study also shows that our multiscale optimization is absolutely critical to per-
formance. Surprisingly, our shape-from-contour baseline performs very well in terms of our
shape/normal error metrics. This is probably just a reflection of the fact that all models are
bad at absolute shape reconstruction, due to the inherent ambiguity in shape-from-shading,
and so the overly-smooth shape predicted by the shape-from-contour model, by virtue of
being smooth and featureless, has a low error relative to the more elaborate depth maps
produced by other models. Of course, the shape-from-contour model performs poorly on all
other error metrics, as we would expect. This analysis of the inherent difficulty of shape es-
timation is further demonstrated by model A+S, which includes external shape information,
and which therefore performs much better in terms of our shape/normal error metrics, but
surprisingly performs similarly to model A (basic SIRFS) in terms of all other error metrics.
From the performance of model A+L we see that knowing the illumination of the scene
a-priori does not help much when the illumination is laboratory-like, but helps a great deal
when the illumination is “natural” — which makes sense, as more-varied illumination simply
makes the reconstruction task more difficult. One surprising conclusion we can draw is that,
though the intrinsic image baselines perform worse in the presence of “natural” illumination,
SIRFS actually performs better in natural illumination, as it can exploit color illumination
to better disambiguate between shading and reflectance (Figure 2.2), and produce higher-
quality shape reconstructions (Figure 2.16). This finding is consistent with recent work
regarding shape-from-shading under natural illumination [45]. However, we should mention
that some of the improved performance in the natural illumination task may be due to the
fact that the images are pseudo-synthethic (their shading images were produced using our
spherical-harmonic rendering) and so they are Lambertian and contain no cast shadows.

In Figure 2.29, we demonstrate a simple graphics application using the output of our
model, for a color image under laboratory illumination. Given just the output of our model
from a single image, we can synthesize novel images in which the shape, reflectance, illu-
mination, or orientation of the object has been changed. The output is not perfect — the
absolute shape is often very incorrect, as we saw in Tables 2.1-2.3, which is due to the in-
herent ambiguity and difficulty in estimating shape from shading. But such shape errors are
usually only visible when rotating the object, and this inherent ambiguity in shape percep-
tion often works in our favor when only manipulating reflectance, illumination, or fine-scale
shape — low-frequency errors in shape-estimation made by our model are often not noticed
by human observers, because both the model and the human are bad at using shading to
estimate coarse shape.
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I. Grayscale Images, Laboratory Illumination
Algorithm Z-MAE N -MAE S-MSE R-MSE RS-MSE L -MSE Avg.

(1) Naive Baseline 25.56 0.7223 0.0571 0.0426 0.0353 0.0484 0.2061

(2) Retinex [35, 40] + SFS 67.15 0.8342 0.0311 0.0265 0.0289 0.0484 0.2002

(3) Tappen et al. [74] + SFS 41.96 0.7413 0.0354 0.0252 0.0285 0.0484 0.1835

(4) Shen et al. [71] + SFS 45.57 0.8293 0.0493 0.0427 0.0436 0.0484 0.2348

(A) SIRFS 31.00 0.5343 0.0156 0.0177 0.0209 0.0103 0.0998

(B) SIRFS, no R-smoothness 27.25 0.5361 0.0267 0.0255 0.0290 0.0152 0.1279

(C) SIRFS, no R-parsimony 23.53 0.4862 0.0224 0.0261 0.0228 0.0167 0.1170

(D) SIRFS, no R-absolute 24.02 0.5023 0.0190 0.0201 0.0222 0.0122 0.1037

(E) SIRFS, no Z-smoothness 29.05 0.5783 0.0241 0.0227 0.0337 0.0125 0.1254

(F) SIRFS, no Z-isotropy 98.07 0.7560 0.0200 0.0198 0.0268 0.0104 0.1419

(G) SIRFS, no Z-contour 34.29 0.7676 0.0208 0.0207 0.0232 0.0231 0.1351

(H) SIRFS, no L-gaussian 26.75 0.5929 0.0270 0.0212 0.0327 0.1940 0.1964

(I) SIRFS, no Z-multiscale 25.58 0.7233 0.0571 0.0426 0.0353 0.0414 0.2009

(J) SIRFS, no L-whitening 33.93 0.5837 0.0207 0.0208 0.0256 0.0119 0.1171

(K) Shape-from-Contour 18.96 0.4192 0.0571 0.0426 0.0353 0.0484 0.1791

(S) shape observation 4.83 0.1952 - - - - -

(A+S) SIRFS + shape observation 3.72 0.2414 0.0128 0.0176 0.0210 0.0096 0.0586

(A+L) SIRFS + known illumination 27.32 0.4944 0.0175 0.0179 0.0225 - -

Table 2.1: Performance on our “Grayscale/Laboratory” dataset variant. We evaluate the
complete SIRFS model, and we compare SIRFS to several baseline techniques, several abla-
tions of SIRFS, and two extensions in which additional information is provided.
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II. Color Images, Laboratory Illumination
Algorithm Z-MAE N -MAE S-MSE R-MSE RS-MSE L -MSE Avg.

(1) Naive Baseline 25.56 0.7223 0.0577 0.0455 0.0354 0.0489 0.2092

(2) Retinex [35, 40] + SFS 85.34 0.8056 0.0204 0.0186 0.0163 0.0489 0.1658

(3) Tappen et al. [74] + SFS 41.96 0.7413 0.0361 0.0379 0.0347 0.0489 0.2040

(4) Shen et al. [71] + SFS 55.95 0.8529 0.0528 0.0458 0.0398 0.0489 0.2466

(5) Gehler et al. [33] + SFS 53.36 0.6844 0.0106 0.0101 0.0131 0.0489 0.1166

(A) SIRFS 19.24 0.3914 0.0064 0.0098 0.0125 0.0096 0.0620

(B) SIRFS, no R-smoothness 19.23 0.4046 0.0125 0.0163 0.0214 0.0092 0.0824

(C) SIRFS, no R-parsimony 19.45 0.4312 0.0096 0.0149 0.0140 0.0091 0.0731

(D) SIRFS, no R-absolute 22.98 0.4288 0.0085 0.0113 0.0135 0.0095 0.0704

(E) SIRFS, no Z-smoothness 19.28 0.4367 0.0114 0.0116 0.0219 0.0088 0.0773

(F) SIRFS, no Z-isotropy 84.08 0.7013 0.0117 0.0128 0.0160 0.0103 0.1063

(G) SIRFS, no Z-contour 32.59 0.7351 0.0103 0.0146 0.0173 0.0444 0.1186

(H) SIRFS, no L-gaussian 20.81 0.4631 0.0199 0.0140 0.0183 0.1272 0.1358

(I) SIRFS, no Z-multiscale 25.62 0.7237 0.0574 0.0453 0.0353 0.0401 0.2022

(J) SIRFS, no L-whitening 24.96 0.4766 0.0106 0.0156 0.0188 0.0138 0.0894

(K) Shape-from-Contour 18.96 0.4192 0.0577 0.0455 0.0354 0.0489 0.1818

(S) shape observation 4.83 0.1952 - - - - -

(A+S) SIRFS + shape observation 3.40 0.2126 0.0070 0.0111 0.0153 0.0063 0.0420

(A+L) SIRFS + known illumination 18.58 0.3761 0.0076 0.0120 0.0146 - -

Table 2.2: Performance on our “Color/Laboratory” dataset variant. We evaluate the com-
plete SIRFS model, and we compare SIRFS to several baseline techniques, several ablations
of SIRFS, and two extensions in which additional information is provided.
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III. Color Images, Natural Illumination
Algorithm Z-MAE N -MAE S-MSE R-MSE RS-MSE L -MSE Avg.

(1) Naive Baseline 25.56 0.7223 0.0283 0.0266 0.0125 0.0371 0.1364

(2) Retinex [35, 40] + SFS 26.76 0.5851 0.0174 0.0174 0.0083 0.0371 0.1066

(3) Tappen et al. [74] + SFS 53.87 0.7255 0.0255 0.0280 0.0268 0.0371 0.1740

(4) Gehler et al. [33] + SFS 37.66 0.6398 0.0162 0.0150 0.0105 0.0371 0.1149

(A) SIRFS 28.21 0.4057 0.0055 0.0046 0.0036 0.0103 0.0469

(B) SIRFS, no R-smoothness 28.41 0.4192 0.0061 0.0057 0.0062 0.0104 0.0546

(C) SIRFS, no R-parsimony 28.90 0.4184 0.0073 0.0064 0.0041 0.0107 0.0540

(D) SIRFS, no R-absolute 20.63 0.3538 0.0068 0.0058 0.0039 0.0091 0.0466

(E) SIRFS, no Z-smoothness 24.68 0.4441 0.0087 0.0062 0.0095 0.0099 0.0618

(F) SIRFS, no Z-isotropy 50.49 0.4015 0.0046 0.0039 0.0037 0.0086 0.0475

(G) SIRFS, no Z-contour 41.27 0.7036 0.0094 0.0083 0.0062 0.0256 0.0843

(H) SIRFS, no L-gaussian 20.22 0.3937 0.0100 0.0088 0.0075 0.0483 0.0796

(I) SIRFS, no Z-multiscale 25.64 0.7205 0.0279 0.0279 0.0124 0.0291 0.1316

(J) SIRFS, no L-whitening 51.74 0.9430 0.0140 0.0106 0.0066 0.0777 0.1246

(K) Shape-from-Contour 19.55 0.4253 0.0283 0.0266 0.0125 0.0371 0.1194

(S) shape observation 4.83 0.1952 - - - - -

(A+S) SIRFS + shape observation 3.17 0.1471 0.0034 0.0032 0.0030 0.0049 0.0206

(A+L) SIRFS + known illumination 10.28 0.1957 0.0018 0.0014 0.0022 - -

Table 2.3: Performance on our “Color/Natural” dataset variant. We evaluate the complete
SIRFS model, and we compare SIRFS to several baseline techniques, several ablations of
SIRFS, and two extensions in which additional information is provided.
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Grayscale Image, Laboratory Illumination
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Figure 2.17: An image from our dataset, for our “Grayscale/Laboratory” dataset variant.
We present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses
external shape information), and the two best-performing intrinsic image techniques (for
which we do SFS on the recovered shading to recover shape).
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Color Image, Laboratory Illumination

T
ru

e
S
IR

F
S

S
IR

F
S
+

S
R

et
in

ex
G

eh
le

r

Image Shape Normals Refl. Shading Light

Figure 2.18: An image from our dataset, for our “Color/Laboratory” dataset variant. We
present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external
shape information), and the two best-performing intrinsic image techniques (for which we
do SFS on the recovered shading to recover shape).
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Color Image, Natural Illumination
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Figure 2.19: An image from our dataset, for our “Color/Natural” dataset variant. We present
the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external shape
information), and the two best-performing intrinsic image techniques (for which we do SFS
on the recovered shading to recover shape).
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Grayscale Image, Laboratory Illumination
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Figure 2.20: An image from our dataset, for our “Grayscale/Laboratory” dataset variant.
We present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses
external shape information), and the two best-performing intrinsic image techniques (for
which we do SFS on the recovered shading to recover shape).
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Color Image, Laboratory Illumination
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Figure 2.21: An image from our dataset, for our “Color/Laboratory” dataset variant. We
present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external
shape information), and the two best-performing intrinsic image techniques (for which we
do SFS on the recovered shading to recover shape).
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Color Image, Natural Illumination
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Figure 2.22: An image from our dataset, for our “Color/Natural” dataset variant. We present
the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external shape
information), and the two best-performing intrinsic image techniques (for which we do SFS
on the recovered shading to recover shape).
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Grayscale Image, Laboratory Illumination
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Figure 2.23: An image from our dataset, for our “Grayscale/Laboratory” dataset variant.
We present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses
external shape information), and the two best-performing intrinsic image techniques (for
which we do SFS on the recovered shading to recover shape).
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Color Image, Laboratory Illumination
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Figure 2.24: An image from our dataset, for our “Color/Laboratory” dataset variant. We
present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external
shape information), and the two best-performing intrinsic image techniques (for which we
do SFS on the recovered shading to recover shape).
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Color Image, Natural Illumination
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Figure 2.25: An image from our dataset, for our “Color/Natural” dataset variant. We present
the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external shape
information), and the two best-performing intrinsic image techniques (for which we do SFS
on the recovered shading to recover shape).
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Grayscale Image, Laboratory Illumination
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Figure 2.26: An image from our dataset, for our “Grayscale/Laboratory” dataset variant.
We present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses
external shape information), and the two best-performing intrinsic image techniques (for
which we do SFS on the recovered shading to recover shape).
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Color Image, Laboratory Illumination
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Figure 2.27: An image from our dataset, for our “Color/Laboratory” dataset variant. We
present the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external
shape information), and the two best-performing intrinsic image techniques (for which we
do SFS on the recovered shading to recover shape).
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Figure 2.28: An image from our dataset, for our “Color/Natural” dataset variant. We present
the ground-truth, the output of SIRFS, the output of SIRFS+S (which uses external shape
information), and the two best-performing intrinsic image techniques (for which we do SFS
on the recovered shading to recover shape).
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(a) Input Image

(b) Modified shape (c) Modified reflectance

(d) Modified light (e) Modified orientation

Figure 2.29: Our system has obvious graphics applications. Given only a single image, we
can estimate an object’s shape, reflectance, or illumination, modify any of those three scene
properties (or simply rotate the object), and then re-render the object.
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2.8 Real-World Images

Though our model quantitatively performs very well on the MIT-Berkeley Intrinsic Images
dataset, this dataset is not very representative of the variety of natural objects in the world
— materials are very Lambertian, many reflectances are very synthetic-looking, and illumi-
nation is not very varied. We therefore present an additional experiment in which we ran
our model on arbitrary masked images of natural objects. We acquired many images (some
with an iPhone camera, some with a DSLR, some downloaded from the internet), manually
cropped the object in the photo, and used them as input to our model. In Figure 2.33
we visualize the output of our model: the recovered shape, normals, reflectance, shading,
and illumination, a synthesized view of the object from a different angle, and a synthesized
rendering of the object using a different (randomly generated) illumination. We did two
experiments: one in which we used a grayscale version of the input image and our labora-
tory illumination model, and one in which we used the color input image and our natural
illumination model. We use the same code and hyperparameters for all images in the two
constituent tasks, where our hyperparameters are identical to those used in the previous
experiments with the MIT-Berkeley Intrinsic Images dataset.

We see that our model is often able to produce extremely compelling shading and re-
flectance images, and qualitatively correct illumination. Our recovered shape and surface
normals are often somewhat wrong, as evidenced by the new synthesized views of each ob-
ject, but our “relit” objects are often very compelling. The most common mistakes made
in shading/reflectance estimation are usually due to our model assuming that the dominant
color of the object is due to illumination, not reflectance (such as in the two pictures of
faces) which we believe is due to biases in our training data towards white reflectances and
colorful illumination.
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Grayscale Images, Laboratory Illumination

Image Shape Normals Refl. Shading Light Rotated Relit

Figure 2.30: Some examples of the output of our model on real, manually cropped grayscale
images of objects.
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Grayscale Images, Laboratory Illumination

Image Shape Normals Refl. Shading Light Rotated Relit

Figure 2.31: More examples of the output of our model on real, manually cropped grayscale
images of objects.
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Color Images, Natural Illumination

Image Shape Normals Refl. Shading Light Rotated Relit

Figure 2.32: Some examples of the output of our model on real, manually cropped color
images of objects.
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Color Images, Natural Illumination

Image Shape Normals Refl. Shading Light Rotated Relit

Figure 2.33: More examples of the output of our model on real, manually cropped color
images of objects.
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2.9 Limitations

Of course, our model has some limitations. Because shading is an inherently poor cue for low-
frequency shape estimation [11, 48] SIRFS often makes mistakes in coarse shape estimation.
To address this, we have presented a method for incorporating some external observation of
shape, such as one from a stereo algorithm or a depth sensor, and we have demonstrated
that by incorporating some low-frequency external shape observation (such as what a stereo
algorithm or a depth sensor would provide) we can produce high-quality shape estimates. We
assume that materials are Lambertian, which is often a reasonable approximation but can
causes problems for objects with specularities. Thankfully, because of the modular nature
of our algorithm, our simple Lambertian rendering engine can easily be replaced by a more
sophisticated model. Another limitation of our technique is that our priors on shape and
reflectance are independent of the category of object present in the scene. We see this as a
strength of our model, as it means that our priors are general enough to generalize across
object categories, but presumably an extension of our model which uses object recognition
techniques to produce class-specific priors should perform better.

The most glaring limitation of SIRFS is that the images we use each consist of a single,
masked object, while real-world natural scenes contain severe occlusion and support rela-
tionships. We also assume illumination is global, and we ignore illumination issues such as
cast shadows, mutual illumination, or other sources of spatially-varying illumination [29, 30].
To address these two issues of occlusion and spatially-varying illumination in natural scenes,
in Chapter 3 we present an extension of SIRFS that is integrated with image segmenta-
tion techniques, by generalizing SIRFS to a mixture model of shapes and lights which are
embedded in a soft segmentation of a scene.
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Chapter 3

Scene-SIRFS

SIRFS is severely limited by its assumption that input images are segmented images of single
objects, illuminated under a single global model of illumination. Natural images, in contrast,
contain many shapes which may occlude or support one another, as well as complicated,
spatially-varying illumination in the form of shadows, attenuation, and interreflection.

In this chapter, we address the problem of inferring a mixture of shapes and a mixture
of illuminations (and implicitly, a shading image and a reflectance image) which explain a
natural scene. Initially, this problem may seem trivial: why not use segmentation techniques
to decompose an image into its constituent objects or illuminations, and then apply SIRFS
to each segment? But this is a classic “chicken-or-the-egg” problem, as we cannot reliably
segment an image into its constituent shapes and illuminations without first inferring shape
and illumination, and vice versa. Additionally, regions of a scene viewed in isolation are
often ambiguous, which suggests that information must be shared between regions. We
must therefore unify the problems of reconstruction (inferring intrinsic scene properties) and
reorganization (grouping an image into meaningful regions), by jointly optimizing over a
mixture of shapes, a mixture of illuminations, and the corresponding embedding of each
mixture component in the image.

For our technique to work, our shape and light mixtures must respect the structure of
the image. We therefore embed our mixtures in the normalized Laplacian of the image,
building on normalized cuts [72], as well as Laplacian embeddings [12] and spectral graph
theory [23]. This is motivated by the observation that variation in shape and illumination
tends to produce gradients and contours in the image, and so our mixtures of shapes and
illuminations should be embedded in a space that respects such image variation.

Using shading cues to infer shape, as we are attempting, is understood to work poorly
for recovering low-frequency (coarse) shape information [16]. Thankfully, depth data from
sensors such as the Kinect [32] is becoming increasing commonplace, and is complementary to
shading: binocular disparity (the principle by which the Kinect computes depth) is accurate
at coarse scales and inaccurate at fine scales. We will therefore assume the input to our
model is an RGB-D image, where “D” is the depth map produced by a sensor such as the
Kinect. This makes our problem easier, but in no way trivial — depth maps from sensors
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such as the Kinect are noisy and incomplete for many reasons: occlusion of the structured
light, dark objects, sensor noise, alignment errors, quantization, and the inherent physical
limitations of binocular disparity. Attempts to use raw depth maps from the Kinect for
photometric applications therefore often fail badly. See Figures 3.5-3.10 for demonstrations
of how noisy these depth maps are compared to the depth maps that our model produces.

In Figures 3.5-3.7 we show the output of our model on an RGB-D image from the NYU
Depth Dataset [73]. Our model’s depth map is a clear improvement over the raw sensor depth
map (missing regions have been filled in, noise has been removed, detail has been added),
our output shading and reflectance images look better than those of the best “intrinsic
image” algorithms, our shape mixture has separated the bed in the foreground from the
walls in the background, and our recovered mixture of illuminations captures the complicated
illumination in the scene produced by the lamp. Even “mistakes” produced by our model are
compelling: our model has attempted to reconstruct the shape of the contents of the photos
on the wall, and has modeled these contents with a different illumination environment than
the rest of the scene, similarly to how a human might perceive an image within an image.
See the supplementary material for dozens of additional examples of our output.

Some past work has addressed similar problems to our own. Forsyth [29] used a spatially-
varying model of illumination to address complicated illumination and interreflection, but did
not address reflectance or scene-like shape occlusion. Yu et al. [79] and Karsch et al. [46] have
attempted to recover the reflectance and illumination of a scene, but assume known geometry
and multiple images, or a user annotation of geometry and illumination, respectively. Hoeim
et al. [38] and Saxena et al. [70] present algorithms for determining the “spatial layout” of a
scene, but these shape estimates are coarse, and these models do not recover illumination,
reflectance, or shading. Lee et al. [52] produces shading and reflectance images given RGB-D
data, but requires a video and a fused depth map, and does not produce an illumination
model or a refined shape.

This chapter is as follows: in Section 2.1 we review SIRFS, in Section 3.1 we formalize
Scene-SIRFS, and in Section 3.2 we introduce the embedding used by our shape and illu-
mination mixtures. In Sections 3.3 and 3.4 we present our priors on shape and illumination
(our shape prior incorporates the input depth map from the Kinect), and in Section 3.5 we
show how we optimize the resulting inference problem. In Sections 3.6.1 and 3.6.2 we present
experiments on pseudo-synthetic and real RGB-D data.
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3.1 Problem Formulation

The problem formulation of Scene-SIRFS is:

minimize
R,Z,ψ,L,ω

g(R) +

|Z|∑
n=1

f ′(Zn, Un) + h′

 |L|∑
m=1

V mLm


subject to I = R + S ′(Z,U ,L,V )

Un =
exp(Bψn)∑
n′ exp(Bψn′)

, ∀n V m =
exp(Bωm)∑
m′ exp(Bωm′)

, ∀m (3.1)

Where Z = {Zn}, U = {Un}, L = {Lm}, and V = {V m}. This is similar to Equation 2.2,
except that we have sets of shapes and lights instead of a single shape and light, and we have
introduced U and V , two sets of “images” that define distributions over shapes and lights,
respectively. We can think of U as a “visibility” map or a soft relaxation of a 2.5D shape
representation: if Un

i,j = 1, then Zn
i,j is visible at pixel (i, j). Similarly, V is the “ownership”

of each illumination in L, such that if V m
i,j = 1 then pixel (i, j) is entirely illuminated by

Lm. Our prior on shape is now a sum of priors over individual depth maps, where each Zn

in Z is regularized independently (see Section 3.3). In contrast, our prior on illumination
is over the expected illumination of the entire scene, the per-pixel weighted combination of
each illumination (see Section 3.4). Our shape and light mixture probabilities U and V are
“images” (where each image corresponds to one mixture component) parametrized by the
matrices ψ and ω, respectively, where each column (ψn or ωm) is a 17-dimensional vector
parametrizing the “ownership” of that shape or light mixture in the scene. The probabilities
U and V are the product of each weight matrix with B (the eigenvectors of the normalized
Laplacian of the RGB image, explained in later) passed through a softmax function1. We
use 8 shapes and illuminations in our mixtures for all experiments (|L| = |Z| = 8) though
this is arbitrary. See Figures 3.5-3.7 for a visualization of these mixtures.

For the purpose of optimization, we need to define the normal field of this mixture of
shapes N ′(Z,U). We cannot use the surface normals of the expected depth map N(

∑
ZnUn)

as this cannot model depth-discontinuities. We also cannot use the expected surface normals
of the mixture of shapes

∑
UnN(Zn) as this normal field may have vectors of non-unit

length. We will therefore linearize each Zn into a set of partial derivatives in x and y, take
the expectation of those with respect to U , and then construct a normal field from those
expected partial derivatives. This gives us a proper normal field where each Zn’s influence

1in a slight abuse of notation, U and V are simultaneously treated as sets of images and as matrices
whose columns are vectorized images.
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at pixel (i, j) is proportional to Un
i,j. Formally:

N ′ (Z,U) =

{
Dx

Dm
,
Dy

Dm
,

1

Dm

}
Dx =

|Z|∑
n=1

Un(Zn ∗ hx), Dy =

|Z|∑
n=1

Un(Zn ∗ hy)

Dm =
√

1 + (Dx)2 + (Dy)2

hx =
1

8

 1 0 – 1
2 0 – 2
1 0 – 1

 , hy =
1

8

 1 2 1
0 0 0

– 1 – 2 – 1

 (3.2)

Let S ′(·) be our rendering engine for our mixtures, which computes the normal field of the
mixture of shapes and renders it such that the spherical harmonic illumination at pixel (i, j)
is a linear combination of all Lm, weighted by V m

i,j :

S ′(Z,U ,L,V ) = S

N ′ (Z,U) ,

|L|∑
m=1

V mLm

 (3.3)

Where S(·) is the rendering engine in SIRFS.
Though the spatially varying illumination parametrized by {L,V } is capable of explain-

ing away shadows, specularities, and interreflections, no attempt has been made to ensure
that the illumination is globally consistent. Though this may seem unsettling, the human
visual system has similar properties: people tend not to notice inconsistent shadows or
impossible illumination [62].

3.2 Mixture Embedding

Using a mixture of shapes and illuminations is necessary to model depth discontinuities and
spatially varying illumination, both of which tend to produce variation in the image in the
form of contours, intensity variation, texture gradients, etc. It therefore follows that we
should embed the shape and light mixtures in some space where the “ownership” of each
mixture adheres to the segmentation of the scene. This simplifies inference, as we restrict
our attention to only mixtures of the shapes and lights that are supported by evidence
in the image. This is similar to the motivation for the use of superpixels as a substrate
for inference in CRF-type models, though our experience suggests that superpixels are a
poor embedding for this task, as they are too “hard”. We will instead embed each mixture
component in a more “soft” embedding: the eigenvectors of the normalized Laplacian of a
graph corresponding to the input RGB image [72]. We construct our embedding as follows:
given an image, first we compute the multiscale Pb of that image [4, 55]. We then form
an affinity matrix from mPb using the intervening contour cue [53], and compute the 17
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(a) Input Image (b) Multiscale Pb (c) Eigenvector basis

(d) A random mixture (e) Another random mixture (f) Another random mixture

Figure 3.1: A visualization of the embedding used in our shape and light mixtures. In 3.1(a),
we have an input image. In 3.1(b) we have the output of multiscale Pb on the input image,
and in 3.1(c) we have the 16 smallest eigenvectors (ignoring the eigenvector that is all 1’s) of
mPb using the intervening contour cue [4]. Each shape’s and light’s “ownership” of the image
is parametrized by a 17-dimensional vector, which is projected onto the eigenvector basis and
passed through a softmax function to yield the probability of each pixel belonging to each
mixture component. 3.1(d), 3.1(e), and 3.1(f) are visualizations of three random mixtures
with 8 components (such as U or V ) where the weight vectors (ψ or ω) are generated
randomly (sampled from a Gaussian).

eigenvectors {ui} corresponding to the smallest eigenvalues (the first eigenvector is all 1’s).
For eigenvectors 2 through 17, we subtract the mean from each ui and divide each by its
standard deviation, and then concatenate these normalized eigenvectors into a matrix B,
with one column per-pixel. B is our embedding space, in that each mixture component is
defined by a 17-dimensional vector, whose inner product with B defines how dominant that
mixture component is at every pixel in the input image. A similar embedding is used in [56],
for the purpose of combining recognition and segmentation. See Figure 3.1 for a visualization
of this embedding.

It may seem unusual that we construct our embedding using only RGB information,
instead of using the complete RGB-D image. We do this because the depth images are often
mis-aligned and noisy enough that it is challenging to construct a single accurate contour
signal from both sources of information. Using only the image to create an embedding
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circumvents the noise in the depth map and forces the reconstructed shape to be aligned
with the image.

Our prior on reflectance g(·) is exactly the same as in SIRFS. In Sections 3.3 and 3.4 we
will define f ′(·) and h′(·), our priors on our shape and illumination mixtures, respectively.

3.3 Shape Priors and Kinect Images

Our prior on shape is a modification of that of SIRFS. We use a linear combination of
the smoothness and isotropy terms fk(Z) and fi(Z) from Sections 2.3.2 and 2.3.3 and we
overwrite the fo(Z,U) term from Section 2.3.5 to incorporate knowledge from the raw sensor
depth map produced by the Kinect Ẑ:

f ′(Z,U) = λkfk(Z) + λffi(Z) + λofo(Z,U) (3.4)

Where fk(Z) minimizes the local variation of mean curvature of Z, encouraging Z to be
smooth, and fi(Z) minimizes the slant of Z, encouraging Z to be fronto-parallel. We intro-
duce fo(Z,U), which encourages Z to be similar to the raw sensor depth map if Z is thought
to be “visible” according to U . Crucially, we apply this prior to each individual depth map in
our mixture rather than to some average depth map. This encourages the scene’s constituent
depth maps to be smooth while allowing the expected depth map implied by the mixture to
vary abruptly, thereby allowing us to model depth discontinuities and occlusion.

We use version 2 of the NYU Depth Dataset [73], which consists of RGB images and
aligned Kinect depth maps. Because Kinect depth maps often have gaps, the dataset also
provides inpainted depth maps. We will use the raw depth maps rather than the inpainted
ones, as our algorithm will implicitly denoise and inpaint depth during inference. In addition
to gaps, Kinect depth maps have different kinds of noise. First: the depth and RGB images
are often not well-aligned — not enough to matter for most recognition tasks, but enough to
affect photometric or reconstruction tasks. Second: the disparity recovered by the Kinect is
often noisy, presumably due to sensor noise or errors in the Kinect’s stereo algorithm. Third:
the disparity is quantized, which leads to step-like artifacts in depth.

We must construct a loss function to encourage our recovered depth Z to resemble the
raw sensor depth Ẑ. First, let us approximate the upper bound of the error introduced by
quantizing the disparity corresponding to Ẑ:

Zerr
i,j = (1.4233× 10−5)Ẑ2

i,j + 2 (3.5)

where Ẑ and Zerr are in centimeters. The first term is derived from the baseline of the Kinect,
and the second term is additional ad-hoc slack. We assume that if the difference between
Zi,j and Ẑi,j at pixel (i, j) is less than Zerr

i,j , then that difference is due to quantization and
therefore should be ignored. Errors greater than Zerr

i,j will be robustly penalized, as they
probably are due to sensor noise or alignment errors. Our loss function is:

fo(Z,U) =
∑
i,j

Ui,j max
(

0,
∣∣∣Zi,j − Ẑi,j∣∣∣− Zerr

i,j

)αo
(3.6)



CHAPTER 3. SCENE-SIRFS 72

Minimizing this is equivalent to assuming noise is uniformly distributed over a region of size
2Zerr

i and is hyper-Laplacian outside of that range. The loss is proportional to Ui,j, which

means that Zi,j need only resemble Ẑi,j if our model believes that this depth map is in the
foreground at pixel (i, j). αo controls the shape of the tail of the distribution, and is tuned
with cross-validation on the training set (along with λk, λf , and λo), which sets αo = 0.7.

3.4 Illumination Priors

Our prior on illumination is a simple extension of the illumination prior of Section 2.4 to a
mixture model, in which we regularize the expectation of a set of illuminations instead of a
single illumination. Given L (our set of spherical harmonic illuminations) and V (our set
of “images” that define a per-pixel distribution over our illuminations), we can compute the
expectation of this model at each pixel of the image:

L̄i,j =

|L|∑
m=1

V m
i,jL

m (3.7)

Where L̄i,j is a 27-dimensional vector describing the effective illumination at pixel (i, j) in
the image. Our prior on illumination is the negative log-likelihood of a multivariate normal
distribution, applied to each 27-dimensional “pixel” in L̄:

h′(L̄) = λL
∑
i,j

(L̄i,j − µL)TΣ−1L (L̄i,j − µL) (3.8)

Where µL and ΣL are the parameters of the Gaussian we learn on the training set, and λL
is the multiplier on this prior (learned through cross-validation on the training set).

3.5 Initialization & Optimization

Optimization of our model is similar to that of Section 2.6. We absorb the I = R + S(·)
constraint in Equation 3.1 by rewriting g(R) as g(I − S(·)), thereby eliminating R as a free
parameter. In optimization we internally represent each depth map Zn as a pyramid, and
whiten each illumination Lm according to {µL,ΣL}. We vectorize those our pyramid-depths,
whitened illuminations, and mixture weights {ψ,ω} into one state vector, and then minimize
the loss in Equation 3.1 using L-BFGS.

This optimization problem is non-convex, and so it is sensitive to initialization. Because
the scenes in the NYU dataset are mostly composed of planar surfaces, we will initialize each
depth map Zi in Z to a plane such that the scene is well-described by the set of planes. To
do this, we fit a mixture of Gaussians to the (x, y, z) coordinates of each pixel in Ẑ (in image
coordinates) using EM with 50 random restarts. Once EM converges we have n multivariate
Gaussians, each parametrized by a mean µ and a covariance matrix Σ. If a Gaussian does
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(a) Kinect Depth Map (b) Mixture of Gaussians (c) Plane-Fit Depth Map

Figure 3.2: We initialize the depth maps in our shape mixture by fitting a mixture of
Gaussians to the (x, y, z) coordinates of depth-map pixels, and then fitting a plane to each
Gaussian. 3.2(a) shows the raw depth map, 3.2(b) shows the posterior probability of each
pixel under each mixture component, and 3.2(c) shows the fitted planes composed into one
depth map according to hard assignments under the mixture of Gaussians.

indeed describe a roughly-planar surface, then Σ will be elongated in two directions, and
narrow in the third. This means that the Gaussian is well described by the plane satisfying
vT([x, y, z] − µ) = 0, where v is the eigenvector corresponding to the smallest eigenvalue of
Σ. We initialize each surface in our mixture to its corresponding plane in our mixture of
Gaussians, by solving for z at every pixel. See Figure 3.2 for a visualization.

This plane-fitting sometimes produces poor results on our synthetic dataset, because
our synthetic scenes contain mostly fronto-parallel objects stacked on top of each other.
Therefore, in our synthetic experiments we initialize the depth maps by doing K-means
(with 50 random restarts) on just the z values in the scene, and then initializing each depth
map to be a centroid, thereby constraining the initial depth-planes to be fronto-parallel.

3.6 Experiments

3.6.1 Pseudo-synthetic Dataset

The primary goal of this chapter is to produce a model that works well on actual Kinect im-
ages. However, it is extremely difficult to produce ground-truth shape, reflectance, shading,
and illumination models for real-world natural scenes. Thankfully, using the MIT-Berkeley
Intrinsic Images dataset we can compose pseudo-synthetic scenes that emulate natural scenes.
We will do this by layering the objects in the dataset into a scene, and then rendering the
resulting shapes using a randomly sampled spatially-varying illumination. For each scene we
also produce a noisy Kinect-like depth map for use as input to our model. With a dataset of
“scene”-like images which contain occlusion and spatially varying illumination, we can quan-
titatively evaluate how our model might perform on actual Kinect imagery. This dataset also
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allows us to tune hyperparameters (on the training set) and compare our model to others
(on the test set).

The creation of our dataset is as follows: The 20 objects in the MIT dataset are down-
sampled by a factor of two, such that our resulting scenes can be reasonably sized. We
split the objects into training and test sets, using the same split as Section 2.7. We then
synthesize 10 training and 10 test scenes, where training scenes are composed of training
objects, and test scenes are composed of test objects. To generate a scene, we iteratively
layer objects on top of each other, taking care to place each object in the largest part of
the scene that is still empty. For each scene we generate a layered depth map, normal map,
and reflectance image. Given these, we then synthesize a natural illumination to generate a
shading image. All of our scenes are 256× 256 pixels.

Natural scenes have complicated, spatially-varying illumination due to attenuation, shad-
owing, interreflection, etc. Therefore, to make this dataset a somewhat realistic surrogate for
real images of natural scenes, we cannot simply use one global model of illumination, as was
done in Section 2.7.4. We will instead synthesize our own spatially-varying illumination as a
mixture of many attenuated point-light sources. For each scene, we generate 50 lights, each
of whose position is generated in a uniform region twice the size of the volume enveloped
by the objects in the scene, and whose color ci is randomly sampled from the average RGB
value of an image in the sIBL Archive2. For each light, we compute the distance di of each
depth-map pixel to the light source and compute an attenuation ai = 1/(1+d2i /40000), where
40000 (which controls the amount of attenuation) is chosen manually such that the result-
ing scenes look reasonable. For each pixel, we compute the unit vector `i from that pixel’s
location in the scene to the light source’s position. We then render the scene according to
attenuated Lambertian reflectance (ci×max (0, ai(ni ·`i))) for each light source, and take the
sum of all of these renderings (after dividing by the max intensity) as the complete shading
image. The final image, which is this shading image multiplied by the previously-generated
reflectance image, will be the RGB input to our system.

In parallel with rendering these images, we render a “light probe” surface that has the
same depths as the scene, but whose normal field is chosen to uniformly sample the space
of orientations. We will evaluate the fidelity of our recovered illumination by rendering
this “light probe” surface according to our recovered illumination, and comparing it to the
ground-truth produced during this synthesis.

In Section 3.3 we described a probabilistic model of the noise present in Kinect depth
maps, for use during inference. This noise model is not sufficient for our experiments:
we must be able to synthetically generate noisy depth maps that are similar to Kinect
depth maps, for the purposes of tuning our model parameters and empirically evaluating the
accuracy of our model on pseudo-synthetic data. We therefore present a generative model to
construct a noisy depth map: Given a “true” depth-map Z∗ in centimeters, we first construct
a disparity map. We replace each pixel in the disparity map with the bilinearly interpolated
value of a location near that pixel where the shift is drawn from a normal distribution

2http://www.hdrlabs.com/sibl/archive.html
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Figure 3.3: A visualization of how we introduce noise to Kinect images. In the first column
we have a ground-truth depth-map, and in the second we have our corrupted version of it
that we will use as a proxy for Kinect data. The third column shows the difference between
the two, where we see the stripe-like noise introduced by quantization, as well as the noise
near the boundaries of the objects introduced by shuffling and mis-aligning the image. The
fourth column is a visualization of our error model, where we see error increases with depth,
in accordance with our understanding of binocular stereo.

σ = 1/2, then we add IID Gaussian noise to each pixel of the disparity map (σ = 1/6), and
then we translate all pixels in the disparity map by a shift drawn from a normal distribution
(σ = 1/4). The first shuffling and injection of noise is intended to simulate sensor noise in
the Kinect, and the second image-wide shuffling is intended to simulate a slightly inaccurate
alignment between the image and the depth map, which we often see in even well-aligned
Kinect data. We quantize the shuffled disparity by rounding it to the nearest integer, and
then convert the disparity measurements back into depth measurements. Formally, our
procedure for corrupting a ground-truth depth map is:

Ẑ ← 35130

b35130/(shuffle(Z∗)) +N (0, (1/6)2) + 0.5c
(3.9)

The constant 35130 is derived from the baseline of the Kinect sensors. See Figure 3.3 for a
visualization of these synthetic noisy depth maps. Though our model for generating noise
is different from our model for inference in the face of noise, manual investigation of the
data suggests that the models largely agree — the marginal distribution of the noisy depth
maps generated from Equation 3.9 appears to match the prior posed earlier, in terms of the
width of the uniform distribution and the shape of the hyper-laplacian tail. Perhaps more
importantly, our synthetically noisy depth maps look similar to the real depth maps in the
NYU Depth Dataset [73].

Table 3.1 compares our model’s performance to other intrinsic images techniques and to
ablations of our model. The shading and reflectance images produced by our model beat
or match the best intrinsic image algorithms. The surface normals produced by our model
have half of the error of the input, though for absolute depth error we do not improve.
This is consistent with the limits of shading, as shading directly informs the surface normal,
but only implicitly informs absolute depth. Our performance is similar to that of SIRFS in
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terms of reflectance, but much better in all other respects. A naive extension of SIRFS to
scenes (in which we use normalized cuts to segment each image into 16 segments and run
SIRFS on each segment in isolation) performs similarly to basic SIRFS. The source of our
advantage over SIRFS is shown through our ablations — removing either the shape or the
illumination mixture components hurts performance on every error metric, and removing
the Kinect depth map hurts performance on the depth and normal error metrics, though not
the shading or reflectance metrics. The degenerate case of our model which only denoises
the depth map and ignores the RGB image performs surprisingly well in terms of error
relative to the ground-truth shape and normal field. However, we believe this mostly reflects
a bias in our error metrics towards overly smooth shapes, which the shape-denoising ablation
produces (see Figure 3.10).
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our depth Z̄

true depth Z∗

our normal N̄

true normal N∗

our reflect. R

true reflect. R∗

our shading S

true shading S∗

our illum. L̄

true illum. L∗

reflectance

shading

reflectance

shading

RGB image I

raw depth Ẑ
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Figure 3.4: A test-set scene from our pseudo-synthetic scene dataset. In 3.4(a) we have the
input to our model: an RGB image and a noisy Kinect-like depth map. In 3.4(b) we have
the depth map, surface normals, reflectance, shading, and spatially-varying illumination that
our model produces, and the corresponding ground-truth scene properties on the bottom.
In 3.4(c) and 3.4(d) we show the shading and reflectance images produced by the best-
performing intrinsic image algorithms. See the supplementary material for additional similar
figures.
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Algorithm Z-MAE N -MAE S-MSE R-MSE RS-MSE L -MSE Avg.

(1) Color Retinex [35, 40] - - 0.0230 0.0364 0.0354 - -
(2) Tappen et al. 2005 [74] - - 0.0281 0.0337 0.0387 - -
(3) Gehler et al. 2011 [33] - - 0.0181 0.0224 0.0216 - -
(4) Kinect Only 5.09 0.5799 - - - - -
(5) SIRFS 114.82 0.6841 0.0181 0.0202 0.0289 0.0241 0.1647
(6) SIRFS + Segmentation 57.43 0.7600 0.0176 0.0200 0.0296 0.0210 0.1458
(A) Scene-SIRFS (Complete) 10.91 0.2618 0.0101 0.0184 0.0227 0.0166 0.0764
(B) Scene-SIRFS (λo = 0) 122.67 0.6454 0.0134 0.0203 0.0256 0.0199 0.1491
(C) Scene-SIRFS (No Initialization) 11.06 0.3000 0.0113 0.0233 0.0263 0.0176 0.0860
(D) Scene-SIRFS (|Z| = 1) 22.72 0.5123 0.0179 0.0284 0.0348 0.0237 0.1302
(E) Scene-SIRFS (|L| = 1) 11.64 0.2754 0.0163 0.0313 0.0269 0.0211 0.0988
(F) Scene-SIRFS (|Z| = |L| = 1) 24.59 0.5285 0.0292 0.0587 0.0523 0.0213 0.1708
(G) Scene-SIRFS (Z only) 9.82 0.2877 - - - - -
(H) Scene-SIRFS (Z only, |Z| = 1) 24.69 0.5552 - - - - -

Table 3.1: Our results on the test set of our pseudo-synthetic dataset. Shown are the ge-
ometric means of six error metrics (detailed in the supplementary material) across the test
set, and an “average” error (the geometric mean of the other error metrics). Z-MAE mea-
sures shape errors, N -MAE measures surface-normal errors, S-MSE, R-MSE, and RS-MSE
measure shading and reflectance errors, and L -MSE measures illumination errors. If an al-
gorithm does not produce a certain scene property, its error is left blank. (1)-(3) are intrinsic
image algorithms, which produce shading and reflectance images from an RGB image, where
(3) is the current state-of-the-art. (4) evaluates the error of the noisy Kinect-like depth maps
we use as input. (5) is the SIRFS model that we build upon, and is equivalent to our model
without any mixture models or a Kinect depth map. (6) is SIRFS run in isolation on the
segments produced by normalized cuts. In addition to our complete model (A), we present
several ablations. (B) has no Kinect information, (C) has no initialization, and (D)-(F) omit
one or both of the shape or light mixtures. (G) is a shape-denoising algorithms in which we
omit the RGB image and just optimize over shape with respect to our prior on shapes, and
(H) is (G) with a single depth map, instead of a mixture model.
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3.6.2 Kinect Data

To qualitatively evaluate our model, we sampled several images from version 2 of the NYU
Depth Dataset [73], and ran them through our model (all using the same hyperparameter
setting as in our pseudo-synthetic experiment). The output of our model can be seen in
Figures 3.5-3.7. We compare against two intrinsic image algorithms: Retinex [35, 40] and
Gehler et al. [33].

Our shading and reflectance images generally look much better than those produced by
the intrinsic image algorithms, and our recovered depth and surface normals look much
better than the input Kinect image. Our spatially varying illumination captures shadowing
and interreflections, and looks reasonable. The primary cause of errors in our model appears
to be over-smoothing of the depth map, which we believe is because the error metrics with
which we cross-validate our model tend to favor conservative parameter settings, and because
MAP estimation for tasks such as ours tends to produce overly conservative output [54].

One way to evaluate the accuracy of our model is to use it in graphics applications. In
Figures 3.8 and 3.9 we use our output to re-render the input image under different camera
viewpoints and under different illumination conditions. Our renderings look significantly
better than renderings produced with the inpainted Kinect depth map provided by the NYU
dataset. Changing the viewpoint with the raw Kinect depths creates jagged artifacts at the
edges of shapes, while our depth (which is both denoised and better-aligned to the image)
looks smooth and natural at object boundaries. Relighting the raw Kinect depth produces
terrible artifacts, as the surface normals of the raw depth are very inaccurate due to noise
and quantization, while relighting our output looks reasonable, as the surface normals are
cleaner and reflectance has been separated from shading. In Figure 3.10 we see that the
depth maps our model produces are less noisy than the NYU depth maps, and more detailed
than the output of the shape-denoising ablation of our model, demonstrating the importance
of the complete model.
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Figure 3.5: In 3.5(a) we have the input to our model: an RGB image and a Kinect depth map
from the NYU Depth Dataset [73]. In 3.5(b) we have the output of our model. Mixtures are
visualized with hue corresponding to component, and intensity corresponding to probability.
Illumination is visualized by rendering a coarse grid of spheres.
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normals N̄

depth Z̄

depth mixture U

sub-depths Z

light mixture V

illumination L̄

reflectance R

shading S

reflectance

shading

reflectance

shading

RGB image I

raw depth Ẑ
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Figure 3.6: More results from the NYU Depth Dataset [73].
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normals N̄

depth Z̄

depth mixture U

sub-depths Z

light mixture V

illumination L̄

reflectance R

shading S

reflectance

shading

reflectance

shading

RGB image I

raw depth Ẑ
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Figure 3.7: Even more results from the NYU Depth Dataset [73].
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Figure 3.8: After a model is recovered, the camera can be moved and the input image
(left) can be shown from a different viewpoint (right). Such a warping could be produced
using just the smoothed Kinect depth maps provided in the NYU dataset (middle), but
these images have jagged artifacts at surface and normal discontinuities. Both renderings,
of course, contain artifacts in occluded regions.
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Figure 3.9: After a model is recovered, the spherical harmonic illuminations can be replaced
(here we use randomly generated illuminations) and the input image (left) can shown under
a different illumination (right). The middle image is our attempt to produce similar re-lit
images using only the inpainted depth maps in the NYU dataset, which look noticeably
worse due to noise in the depth image and the fact that illumination and reflectance have
not been decomposed.
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(a) input (b) NYU depth (c) denoised depth (d) our depth

Figure 3.10: One output of our model is a denoised depth-map. In 3.10(a) we have the
RGB-D input to our model, demonstrating how noisy and incomplete the raw Kinect depth
map can be. 3.10(b) shows the inpainted normals and depth included in the NYU dataset
[73], where holes have been inpainted but there is still a great deal of noise, and many
fine-scale shape details are missing. 3.10(c) is from an ablation of our model in which we
just denoise/inpaint the raw depth map (“model H” in our ablation study), and 3.10(d) is
from our complete model. The NYU depth map is noisy at high frequencies and does not
model depth discontinuities (hence the dark “slant” lines outlining each object), and our
“denoising” model tends to oversmooth the scene, but our complete model has little noise
while recovering much of the detail of the scene and correctly separating objects into different
layers.
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Chapter 4

Conclusion

We have presented SIRFS, a model which takes as input a single (masked) image of an ob-
ject, and produces as output a reasonable estimate of the shape, surface normals, reflectance,
shading, and illumination which produced that image. At the core of SIRFS is a series of
priors on shape, reflectance, and illumination: surfaces tend to be isotropic and bend infre-
quency, reflectance images tend to be piecewise smooth and low-entropy, and illumination
tends to be natural. Given these priors and our multiscale optimization technique, we can
infer the most-likely explanation of a single image subject to our priors and the constraint
that the image be explained. Our unified approach to this problem outperforms all previous
solutions to its constituent problems of shape-from-shading and intrinsic image recovery on
our challenging dataset, and produces reasonable results on arbitrary masked images of real-
world objects in uncontrolled environments. This suggests that the shape-from-shading and
intrinsic images problem formulations may be fundamentally limited, and attention should
be refocused towards developing models that jointly reason about shape and illumination in
addition to shading and reflectance.

We have also presented Scene-SIRFS, a variant of SIRFS that takes as input images of
natural scenes rather than images of segmented objects. We have done this by generalizing
SIRFS into a mixture model of shapes and illuminations, and by embedding those mixtures
into a soft segmentation of an image. We additionally use the noisy depth maps in RGB-
D data to improve low-frequency shape estimation. Scene-SIRFS addresses the primary
shortcomings of SIRFS, in that it can model multiple, occluding objects, spatially-varying
illumination, and can use the coarse shape estimate provided by the Kinect to overcome the
problems associated with estimating shape from shading.

The output of our model can be used for graphics applications such relighting or re-
orienting the camera, and it is easy to imagine other applications such as inserting objects,
modifying reflectances, or white balancing. Our model improves the initial depth map by
removing noise, adding fine-scale shape detail, and aligning the depth to the RGB image, all
of which presumably would be useful in any application involving RGB-D images. Perhaps
most importantly, our model takes an important step towards solving one of the grand
challenges in vision — inferring all intrinsic scene properties from a single image.
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