The Rational Krylov algorithm computes eigenvalues and eigenvectors of a regular not necessarily symmetric matrix pencil. It is a generalization of the shifted and inverted Arnoldi algorithm, where several factorizations with different shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil approximates the solution of the original pencil. Different types of Ritz values and harmonic Ritz values are described and compared. Periodical purging of uninteresting directions reduces the size of the basis, and makes it possible to get many linearly independent eigenvectors and principal vectors to pencils with multiple eigenvalues. Relations to iterative methods are established.
Results are reported for two large test examples. One is a symmetric pencil coming from a finite element approximation of a membrane, the other a nonsymmetric matrix modeling an idealized aircraft stability problem.
Title
Rational Krylov, A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils
Published
1995-04-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-95-871
Type
Text
Extent
16 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).