We give the first comprehensive analysis of the effect of boundary conditions on the mixing time of the Glauber dynamics for the Ising model. Specifically, we show that the mixing time on an n-vertex regular tree with (+)-boundary remains O(n log n) at all temperatures (in contrast to the free boundary case, where the mixing time is not bounded by any fixed polynomial at low temperatures). We also show that this bound continues to hold in the presence of an arbitrary external field. Our results are actually stronger, and provide tight bounds on the log-Sobolev constant and the spectral gap of the dynamics. In addition, our methods yield simpler proofs and stronger results for the mixing time in the regime where it is insensitive to the boundary condition. Our techniques also apply to a much wider class of models, including those with hard constraints like the antiferromagnetic Potts model at zero temperature (colorings) and the hard-core model (independent sets).
Title
The Ising model on trees: Boundary conditions and mixing time
Published
2003-07-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-03-1256
Type
Text
Extent
31 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).