Consider the following problem in game manipulation. A tournament designer who has full knowledge of the match outcomes between any possible pair of players would like to create a bracket for a balanced single-elimination tournament so that their favorite player will win. Although this problem has been studied in the areas of voting and tournament manipulation, it is still unknown whether it can be solved in polynomial time. We focus on identifying several general cases for which the tournament can always be rigged efficiently so that the given player wins. We give constructive proofs that, under some natural assumptions, if a player is ranked among the top K players, then one can efficiently rig the tournament for the given player, even when K is as large as 19% of the players.
Title
Rigging Tournament Brackets for Weaker Players
Published
2011-06-14
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2011-75
Type
Text
Extent
21 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).