In this work, I present a CMOS implementation of a neuromorphic system that aims to mimic the behavior of biological neurons and synapses in the human brain. The synapse is modeled with a memristor-resistor voltage divider, while the neuron-emulating circuit (“CMOS Neuron”) comprises transistors and capacitors. The input aggregation and output firing characteristics of a CMOS Neuron are based on observations from studies in neuroscience, and achieved using both analog and digital circuit design principles. The important Spike Timing Dependent Plasticity (STDP) learning scheme is explored in detail, and a simple adaptive learning experiment is performed to demonstrate the CMOS Neuron’s potential for future artificial intelligence applications.
Title
CMOS and Memristor Technologies for Neuromorphic Computing Applications
Published
2015-12-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2015-218
Type
Text
Extent
31 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).