The Sprite network operating system uses large main-memory disk block caches to achieve high performance in its file system. It provides non-write-through file caching on both client and server machines. A simple cache consistency mechanism permits files to be shared by multiple clients without danger of stale data. In order to allow the file cache to occupy as much memory as possible, the file system of each machine negotiates with the virtual memory system over physical memory usage and changes the size of the file cache dynamically. Benchmark programs indicate that client caches allow diskless Sprite workstations to perform within 5 percent of workstations with disks. In addition, client caching reduces server loading by 50% and network traffic by 75%.
Title
Caching in the Sprite Network File System
Published
1987-03-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-87-345
Type
Text
Extent
20 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).