Recently, systems operating in the millimeter-wave frequency bands are demonstrated and realized for many applications. A W-band phase-locked loop (PLL) is designed for a 94GHz medical imaging system. Four popular frequency synthesizer architectures are discussed and compared. The PLL using a fundamental voltage-controlled oscillator (VCO) is chosen for the synthesizer architecture and realized in 130nm SiGe BiCMOS process. The employed fundamental Colpitts VCO achieves a tuning range from 92.5 to 102.5GHz, an output power of 6dBm, and a phase noise of -124.5dBc/Hz at 10MHz offset. The locking range of the PLL is from 92.7 to 100.2GHz, the phase noise is -102dBc/Hz at 1MHz offset, and reference spurs are not observable. This work also compares the figure-of-merit for millimeter-wave VCOs and discusses the LO distribution for millimeter-wave applications.
Title
A W-Band Phase-Locked Loop for Millimeter-Wave Applications
Published
2015-05-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2015-25
Type
Text
Extent
59 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).