The fastest parallel algorithm for a problem may be significantly less stable numerically than the fastest serial algorithm. We illustrate this phenomenon by a series of examples drawn from numerical linear algebra. We also show how some of these instabilities may be mitigated by better floating point arithmetic.
Title
Trading Off Parallelism and Numerical Stability
Published
1992-09-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-92-702
Type
Text
Extent
20 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).