Write-invalidate and write-broadcast coherency protocols have been criticized for being unable to achieve good bus performance across all cache configurations. In particular, write-invalidate performance can suffer as block size increases; and large cache sizes will hurt write-broadcast. Read-broadcast and competitive snooping extensions to the protocols have been proposed to solve each problem.
Our results indicate that the benefits of the extensions are limited. Read-broadcast reduces the number of invalidation misses, but at a high cost in processor lockout from the cache. The net effect can be an increase in total execution cycles. Competitive snooping benefits only those programs with high per processor locality of reference to shared data. For programs characterized by inter-processor contention for shared addresses, competitive snooping can degrade performance by causing a slight increase in bus utilization and total execution time.
Title
Evaluating the Performance of Four Snooping Cache Coherency Protocols
Published
1988-12-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-88-478
Type
Text
Extent
28 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).