PDF

Description

A series of advances in organic memory technology is demonstrated that enable an entirely new low-cost memory technology. We investigate the optimization and structural design of organic transistors that are to be used in addressing circuitry. We overcome previous limitations in organic circuit density through the use of electron-beam lithography and special water-soluble resists. Finally, we incorporate these advances with the first-ever organic antifuse. We present this novel memory technology to be utilized in a three-dimensional one-time-programmable (3D-OTP) nonvolatile storage array. Without the prohibitive costs of silicon processing, this memory is capable of setting cost points several orders of magnitude lower than their inorganic counterparts. We have also successfully integrated this technology onto flexible plastic substrates, enabled by our low processing temperature (less than 100C). Combined with stacking, these vertical memory elements can create ROM densities denser than many inorganic memories, at a fraction of the cost.

Details

Files

Statistics

from
to
Export
Download Full History