We consider the hypothesis testing problem of detecting a shift between the means of two multivariate normal distributions in the high-dimensional setting, allowing for the data dimension p to exceed the sample size n. Specifically, we propose a new test statistic for the two-sample test of means that integrates a random projection with the classical Hotelling T-squared statistic. Working under a high-dimensional framework with (p,n) tending to infinity, we first derive an asymptotic power function for our test, and then provide sufficient conditions for it to achieve greater power than other state-of-the-art tests. Using ROC curves generated from synthetic data, we demonstrate superior performance against competing tests in the parameter regimes anticipated by our theoretical results.
Title
A More Powerful Two-Sample Test in High Dimensions using Random Projection
Published
2014-04-09
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2014-28
Type
Text
Extent
29 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).