We consider the problem of network anomaly detection given the data collected and processed over large distributed systems. Our algorithmic framework can be seen as an approximate, distributed version of the well-known Principal Component Analysis (PCA) method, which is concerned with continuously tracking the behavior of the data projected onto the residual subspace of the principal components within error bound guarantees. Our approach consists of a protocol for local processing at individual monitoring devices, and global decision-making and monitoring feedback at a coordinator. A key ingredient of our framework is an analytical method based on stochastic matrix perturbation theory for balancing the tradeoff between the accuracy of our approximate network anomaly detection, and the amount of data communication over the network.
Title
Distributed PCA and Network Anomaly Detection
Published
2006-07-14
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2006-99
Type
Text
Extent
15 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).