In this paper, we investigate large scale computers' capability of speeding up deep neural networks (DNN) training. Our approach is to use large batch size, powered by the Layer-wise Adaptive Rate Scaling (LARS) algorithm, for efficient usage of massive computing resources. Our approach is generic, as we empirically evaluate the effectiveness on two neural networks: AlexNet and ResNet-50 trained with the ImageNet-1k dataset while preserving the state-of-the-art test accuracy. Compared to the baseline of a previous study from a group of researchers at Facebook, our approach shows higher test accuracy on batch sizes that are larger than 16K. Using 2,048 Intel Xeon Platinum 8160 processors, we reduce the 100-epoch AlexNet training time from hours to 11 minutes. With 2,048 Intel Xeon Phi 7250 Processors, we reduce the 90-epoch ResNet-50 training time from hours to 20 minutes. Our implementation is open source and has been released in the Intel distribution of Caffe v1.0.7.
Title
ImageNet Training in Minutes
Published
2020-01-25
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2020-18
Type
Text
Extent
12 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).