
A Learning Based Approach to Control Synthesis of
Markov Decision Processes for Linear Temporal Logic

Specifications

Dorsa Sadigh
Eric Kim
Samuel Coogan
S. Shankar Sastry
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-166
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-166.html

September 20, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

A Learning Based Approach to Control Synthesis of Markov Decision
Processes for Linear Temporal Logic Specifications

Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, Sanjit A. Seshia

Abstract— We propose to synthesize a control policy for a
Markov decision process (MDP) such that the resulting traces
of the MDP satisfy a linear temporal logic (LTL) property.
We construct a product MDP that incorporates a deterministic
Rabin automaton generated from the desired LTL property.
The reward function of the product MDP is defined from the
acceptance condition of the Rabin automaton. This construction
allows us to apply techniques from learning theory to the
problem of synthesis for LTL specifications even when the
transition probabilities are not known a priori. We prove that
our method is guaranteed to find a controller that satisfies the
LTL property with probability one if such a policy exists, and
we suggest empirically with a case study in traffic control that
our method produces reasonable control strategies even when
the LTL property cannot be satisfied with probability one.

I. INTRODUCTION

Control of Markov Decision Processes (MDPs) is a
problem that is well studied for applications such as
robotics surgery, unmanned aircraft control and control of
autonomous vehicles [1], [2], [3]. In recent years, there has
been an increased interest in exploiting the expressiveness
of temporal logic specifications in controlling MDPs [4],
[5], [6]. Linear Temporal Logic (LTL) provides a natural
framework for expressing rich properties such as stability,
surveillance, response, safety and liveness. Traditionally,
control synthesis for LTL specifications is solved by finding
a winning policy for a game between system requirements
and environment assumptions [7], [8].

More recently, there has been an effort in exploiting these
techniques in designing controllers to satisfy high level spec-
ifications for probabilistic systems. Ding et al. [6] address
this problem by proposing an approach for finding a policy
that maximizes satisfaction of LTL specifications of the form
φ = GFπ ∧ ψ subject to minimization of the expected cost
in between visiting states satisfying π. In order to maximize
the satisfaction probability of φ, the authors appeal to results
from probabilistic model checking [9], [10]. The methods
used for maximizing this probability take advantage of com-
puting maximal end components, which are not well suited
for partial MDPs with unknown probabilities. We present a
different technique that does not require preprocessing of the
model. Our algorithm learns the transition probabilities of a
partial model online. Our method can therefore be applied in

This work is supported in part by NDSEG and NSF Graduate Research
Fellowships, NSF grant CCF-1116993 and DOD ONR Office of Naval
Research N00014-13-1-0341.

The authors are with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, {dsadigh, eskim,
scoogan, sseshia, sastry}@eecs.berkeley.edu.

practical contexts where we start from a partial model with
unspecified probabilities.

Our approach is based on finding a policy that maximizes
the expected utility of an auxiliary MDP constructed from
the original MDP and a desired LTL specification. As in
the above mentioned existing work, we convert the LTL
specification to a deterministic Rabin automaton (DRA) [11],
[12], and construct a product MDP such that the states of the
product MDP are pairs representing states of the original
MDP in addition to states of the DRA that encodes the
desired LTL specification. The novelty of our approach is
that we then define a state based reward function on this
product MDP based on the Rabin acceptance condition of
the DRA. We extend our results to allow unknown transition
probabilities and learn them online. Furthermore, we select
the reward function on the product MDP so it corresponds
to the Rabin acceptance condition of the LTL specification.
Therefore, any learning algorithm that optimizes the expected
utility can be applied to find a policy that satisfies the
specification.

We implement our method using a reinforcement learning
algorithm that finds the policy optimizing the expected
utility of every state in the Rabin-weighted product MDP.
Moreover, we prove that if there exists a strategy that satisfies
the LTL specification with probability one, our method is
guaranteed to find such a strategy. For situations where a
policy satisfying the LTL specification with probability one
does not exist, our method finds reasonable strategies. We
show this performance for two case studies: 1) Control of
an agent in a grid world, and 2) Control of a traffic network
with intersections.

This paper is organized as follows: In Section II, we
review necessary preliminaries. In Section III-A, we define
the synthesis problem and provide theoretical guarantees in
finding a policy satisfying the specification for a special
case. Section III-B discusses a learning approach towards
finding an optimal controller. We provide two case studies
in Section IV. Finally, we conclude in Section V.

II. PRELIMINARIES

We introduce preliminaries on the specification language
and the probabilistic model of the system. We use Linear
Temporal Logic (LTL) to define desired specifications. A
LTL formula is built of atomic propositions ω ∈ Π that
are over states of the system that evaluate to True or
False, propositional formulas φ that are composed of
atomic propositions and Boolean operators such as ∧ (and),
¬ (negation), and temporal operations on φ. Some of the

common temporal operators are defined as:

Gφ φ is true all future moments.
Fφ φ is true some future moments.
Xφ φ is true the next moment.
φ1Uφ2 φ1 is true until φ2 becomes true.

Using LTL, we can define interesting liveness and safety
properties such as surveillance properties GFφ, or stability
properties FGφ.

Definition 1. A deterministic Rabin automaton is a tuple
R = 〈Q,Σ, δ, q0, F 〉 where Q is the set of states; Σ is the
input alphabet; δ : Q×Σ→ Q is the transition function; q0

is the initial state and F represents the acceptance condition:
F = {(G1, B1), . . . , (GnF

, BnF
)} where Gi, Bi ⊂ Q for

i = 1, . . . , nF .

A run of a Rabin automaton is an infinite sequence r =
q0q1 . . . where q0 ∈ Q0 and for all i > 0, qi+1 ∈ δ(qi, σ), for
some input σ ∈ Σ. For every run r of the Rabin automaton,
inf(r) ∈ Q is the set of states that are visited infinitely often
in the sequence r = q0q1 A run r = q0q1 . . . is accepting
if there exists i ∈ {1, . . . , nF } such that:

inf(r) ∩Gi 6= ∅ and inf(r) ∩Bi = ∅ (1)

For any LTL formula φ over Π, a deterministic Rabin
automaton (DRA) can be constructed with input alphabet
Σ = 2Π that accepts all and only words over Π that satisfy
φ [12]. We let Rφ denote this DRA.

Definition 2. A labeled Markov Decision Process (MDP) is a
tupleM = 〈S,A, P, s0,Π, L〉 where S is a finite set of states
of the MDP; A is a finite set of possible actions (controls)
and A : S → 2A is defined as the mapping from states
to actions; P is a transition probability function defined as
P : S × A × S → [0, 1]; s0 ∈ S is the initial state; Π is
a set of atomic propositions, and L : S → 2Π is a labeling
function that labels a set of states with atomic propositions.

III. SYNTHESIS THROUGH REWARD MAXIMIZATION

A. Problem Formulation

Consider a labeled MDP

M = 〈S,A, P, s0,Π, L〉 (2)

and a linear temporal logic specification φ.

Definition 3. A policy for M is a function π : S+ → A
such that π(s0s1 . . . sn) ∈ A(sn) for all s0s1 . . . sn ∈ S+

where S+ denotes the set of all finite sequences of states in
S.

Observe that a policy π for an MDPM induces a Markov
chain which we denote by Mπ . A run of a Markov chain
is an infinite sequence of states s0, s1, . . . , where s0 is the
initial state of the Markov chain, and for all i, P (si, a, si+1)
is nonzero for some action a ∈ A.

Our objective is to compute a policy π∗ for M such that
the runs of Mπ∗ satisfy the LTL formula φ with probability
one as defined below. Our approach composes M and the

DRA Rφ = 〈Q,Σ, δ, q0, F 〉 whose acceptance condition
corresponds to satisfaction of φ. We then obtain a policy π∗

for this composition. Our approach is particularly amenable
to learning-based algorithms as we discuss in Section III-B.
In particular, the policy π∗ can be constructed even when the
transition probabilities P for M are not known. Thus, we
present an approach that allows the policy π∗ to be found
online while learning the transition probabilities of M.

We create a Rabin weighted product MDP P ,defined
below, using the DRA Rφ and labeled MDP M. The set
of states SP in P are a set of augmented states with
components that correspond to states in M and components
that correspond to states in Rφ. The set of actions AP is
identical to the set of actions in M.

To this end, we define a Rabin weighted product MDP
given a MDP M and a DRA R as follows:

Definition 4. A Rabin weighted product MDP or sim-
ply product MDP between a labeled MDP M =
〈S,A, P, s0,Π, L〉 and a DRA R = 〈Q,Σ, δ, q0, F 〉 is
defined as a tuple P = 〈SP ,AP , PP , sP0, FP ,WP〉 [6],
where:
• SP = S ×Q is the set of states.
• AP provides the set of control actions from the MDP:
AP((s, q)) = A(s).

• PP is the set of transition probabilities defined as:

PP(sP , a, s
′
P) =

{
P (s, a, s′) if q′ = δ(q, L(s))

0 otherwise
(3)

sP = (s, q) ∈ SP and s′P = (s′, q′).
• sP0 = (s0, q0) ∈ SP is the initial state,
• FP is the acceptance condition given by

FP = {(G1,B1), . . . , (GnF
,BnF

)}

where Gi = S ×Gi and Bi = S ×Bi.
• For the above acceptance condition, WP = {W i

P}
nF
i=1 is

a collection of reward functions W i
P : SP → R defined

by:

W i
P(sP) =


wG if sP ∈ Gi
wB if sP ∈ Bi
0 if sP ∈ S\

(
Gi ∪ Bi

) (4)

where wG > 0 is a positive reward, wB < 0 is a
negative reward.
We let Ni = S\

(
Gi ∪ Bi

)
for every pair of (Gi,Bi).

We use the notation Pi to denote P with the specific
reward function W i

P . In seeking a policy π for M such that
Mπ satisfies φ, it suffices to consider stationary policies of
the corresponding Rabin weighted product MDP [9].

Definition 5. A stationary policy π for a product MDP P is
a mapping π : SP → AP that maps every state to actions
selected by policy π.

A stationary policy for P corresponds to a finite memory
policy for M. We let Pπ denote the Markov chain induced
by applying the stationary policy π to the product MDP P .

Let r = sP0sP1sP2 . . . be a run of Pπ with initial product
state sP0.

Definition 6. Consider a MDPM and a LTL formula φ with
corresponding DRA Rφ, let P be the corresponding Rabin
weighted MDP, and let π be a stationary policy on P . We
say that Mπ satisfies φ with probability 1 if

Pr({r : ∃(Gi,Bi) ∈ FP(s)

inf(r) ∩ Gi 6= ∅ ∧ inf(r) ∩ Bi = ∅}) = 1

where r is a run of Pπ initialized at sP0.

Intuitively, Mπ satisfies φ with probability one if the
probability measure of the runs of Pπ that violate the
acceptance condition of φ is 0.
We let i be index of Rabin acceptance condition for property
φ. A reward function W i

P(sP) on every state is specified
in Definition 4 and can be identified by Wi ∈ R|SP | for
some enumeration of SP . We assign a negative reward wB
to states sP ∈ Bi = S×Bi since we would like to visit them
only finitely often. Similarly we assign positive rewards wg
to sP ∈ Gi, and reward of 0 on neutral states sP ∈ Ni to
bias the policy towards satisfaction of the Rabin automaton’s
acceptance condition.

Definition 7. For i ∈ {1, . . . , nF }, the expected discounted
utility for a policy π on Pi with discount factor 0 < γ < 1
is a vector Ui

π = [U iπ(s0) . . . U iπ(sN)] for sk ∈ SP , k ∈
{1, . . . , N} and N = |SP |, such that:

Uiπ =

∞∑
n=0

γnPnπW
i (5)

where Wi is the vector of the rewards W i
P(sP) and Pπ is

a matrix containing the probabilities PP(sP , π(sP), s′P). For
simpler notation, we omit the superscript i the index of Rabin
acceptance condition of the LTL specification. In the rest of
this paper, it is assumed that W and Uπ are the reward and
utility vectors of the product MDP with their corresponding
set of Rabin acceptance condition pair (Gi,Bi).

Definition 8. A policy that maximizes this expected dis-
counted utility for every state is an optimal policy π∗ =
[π∗(s0) . . . π∗(sN)], defined as:

π∗ = arg max
π

∞∑
n=0

γnPnπW (6)

Note that for any policy π, for all s ∈ SP Uπ(s) ≤
Uπ∗(s). From a product MDP P , we seek a policy that
satisfies the LTL specification by optimizing the expected
future utility. Note that an optimal policy exists for each
acceptance condition (Gi,Bi) ∈ FP and thus our reward
maximization algorithm must be run on each acceptance
condition. The outcome is a collection of strategies {π∗i }

nF
i=1

where π∗i is the optimal policy under rewards W i
P . We use

Definition 6 to determine whether a policy π∗i satisfies φ
with probability one by analyzing properties of the recurrent
classes in P [9].

The following theorem shows that optimizing the expected
discounted utility produces a policy π such thatMπ satisfies
φ with probability one if such a policy exists.

Theorem 1. Given MDP M and LTL formula φ with
corresponding Rabin weighted product MDP P . If there
exists a policy π̄ such thatMπ̄ satisfies φ with probability 1,
then there exists i∗ ∈ {1, . . . , nF }, γ∗ ∈ [0, 1), and w∗B < 0
such that any algorithm that optimizes the expected future
utility of Pi∗ with γ ≥ γ∗ and wB ≤ w∗B will find such a
policy.

Proof. Proof of theorem 1 can be found in Appendix A.
Intuitively, choosing γ i.e. the discount factor close to 1
enforces visiting Gi infinitely often, and a large enough
negative reward wB enforces visiting Bi only finitely often.
This will result in satisfaction of φ by our algorithm.

Theorem 1 provides a practical approach to synthesizing
a control policy π∗ for the MDP M. After constructing
the corresponding product MDP P , a collection of policies
{π∗i }

nF
i=1 is computed that optimize the expected future

utility of each Pi. Provided that γ and |wB | are sufficiently
large, if there exists a policy π such that Mπ satisfies φ
with probability 1, then for at least one of the computed
policies π∗i ,Mπ∗i

satisfies φ with probability 1. Determining
which of the policies satisfy φ with probability 1 is easily
achieved by computing strongly connected components of
the resulting Markov chains, for which there exists efficient
graph theoretic algorithms [9].

In this section, we have not provided an explicit method
for optimizing the expected utility of the product MDP P . If
the transition probabilities ofM are not known a priori, then
the optimization algorithm must simultaneously learn the
transition probabilities while optimizing the expected utility,
and tools from learning theory are well-suited for this task.
In the following section, we discuss how these tools apply
to the policy synthesis problem above.

B. Synthesis through Reinforcement Learning

By translating the LTL synthesis problem into an expected
reward maximization framework in section III-A, it is now
possible to use standard techniques in the reinforcement
learning literature to find satisfying control policies.

In the previous section, we did not provide an explicit
method for optimizing the expected utility of the product
MDP P . If the transition probabilities of M are not known
a priori, then the optimization algorithm must 1) Learn the
transition probabilities and 2) Optimize the expected utility.
Tools from learning theory are well-suited for this task.

Algorithm 1 below is a modified active temporal difference
learning algorithm [13] that accomplishes these goals. It
is called after each observed transition and updates a set
of persistent variables, which include a table of transition
frequencies, state utilities, and the optimal policy that can
each be initialized by the user with a priori estimates. The
magnitude of the update is determined by a learning rate, α.
Algorithm 1 is customized to take advantage of the structure

Algorithm 1 Temporal Difference Learning for MP
Input: s′P Current state of P .
Output: a′P Current action
Persistent Values:
· Utilities UP(sP) for all states of P initialized at 0.
· Nsa(JsPK, aP) a table of frequency of state, action pairs
initialized by the user.
· Ns′|sa(JsPK, aP , Js′PK) a table of frequency of the out-
come of the equivalence class Js′PK for state, action pairs
in the equivalence class (JsPK, aP) initialized by the user.
· Optimal Policy π∗ for every state. Initialized at 0.
· sP , aP previous state and action, initialized as null
if s′P is new then
UP(s′P)←W i

P(s′P)
end if
if ResetConditionMet() is True then
s′P = ResetRabinState(s′P)

else if sP is not NULL then
Nsa(JsPK, aP)← Nsa(JsPK, aP) + 1
Ns′|sa(JsPK, aP , Js′PK)← Ns′|sa(JsPK, aP , Js′PK) + 1
for all t that Ns′|sa(JsK, a, JtK) 6= 0 do
P (JsK, a, JtK)←

Ns′|sa(JsK, a, JtK)/Nsa(JsK, a)
end for
UP(sP)←

α UP(sP) + (1− α)[W i
P(sP)

+ γmaxa
∑
σ P (sP , aP , σ)U(σ)]

π∗(sP)← arg maxa∈AP(sP)

∑
σ P (sP , aP , σ)U(σ)

end if
Choose current action a′P = fexp
sP = s′P
aP = a′P

in P to converge more quickly to the actual transition prob-
abilities. Observe that product states corresponding to the
same labeled MDP state have the same transition probability
structure i.e. PP(sP , a, s

′
P) = PP(ŝP , a, ŝ

′
P) if sP = (s, q),

ŝP = (s, q̂), ŝP = (s′, q′), and ŝ′P = (s′, q̂′), where
q, q′, q̂, q̂′ ∈ Q, and s, s′ ∈ S. Therefore, every iteration
in the product MDP can in fact be used to update the
transition probability estimates for all product MDP states
that share the same labeled MDP state. Thus, the algorithm
uses equivalence classes (JsPK, aP), where JsPK = s×Q =
{sP = (s, q)|q ∈ Q} to more quickly converge to the optimal
policy.

Traditionally, temporal difference learning occurs over
multiple trials where the initial state is reset after each
trial [14]. Similarly, in an online application, where we
cannot reset the labeled MDP state, we periodically reset the
Rabin component of the product state to Q0. For instance,
if the LTL formula contains any safety specifications, then a
safety violation will make it impossible to reach a state with
positive reward in P . To ensure we obtain a correct control
action for every state we introduce a function “ResetCon-
ditionMet()” in Algorithm 1 that forces a Rabin state reset

Fig. 1. A grid world example with a superimposed sample trajectory
under the policy π∗ generated by the reinforcement learning algorithm.
The trajectory has a length of 1000 time steps and an initial location (0,3)
denoted by a solid square. The arrows denote movement from the box
containing the arrow to a corresponding adjacent state. Locations (3,0) and
(4,0) do not have any arrows because they are not reachable from the initial
state under our policy. Note that π∗ is deterministic, but may cause a single
location on the grid (e.g. location (4,2)) to have different actions under
different Rabin states.

whenever a safety violation is detected, or heuristically after
a set time interval if liveness properties are not being met.
In both case studies, we observed that this reset technique
results in Algorithm 1 converging to a satisfying policy.

We note that online learning algorithms on general MDPs
do not have hard convergence guarantees to the opti-
mal policy because of the exploitation versus exploration
dilemma [13]. A learning agent decides whether to explore or
exploit via the exploration function fexp. One possible explo-
ration function for probably approximately correct learning
observes transitions and builds an internal model of the
transition probabilities. The agent defaults to an exploration
mode and only explores if it can learn more about the system
dynamics [15].

IV. CASE STUDIES

A. Control of an agent in a grid world

For illustrative purposes, we consider an agent in a 5× 5
grid world that is required to visit regions labeled A and B
infinitely often, while avoiding region C. The LTL specifi-
cation is given as the following formula:

GFA ∧GFB ∧G¬C (7)

The agent is allowed four actions, where each one ex-
presses a preference for a diagonal direction. An “upper
right” action will cause the agent to move right with prob-
ability 0.4, up with probability 0.4, and remain stationary
with probability 0.2. If a wall is located to the agent’s right
then it will move up with probability 0.8, if one is located
above then it will move to the right with probability 0.8, and
if the agent is in the upper right corner, then it is guaranteed
to remain in the same location. The dynamics for the other
actions are identical after an appropriate rotation.

v1 v2

1 2
3

4

Fig. 2. A traffic network consisting of East-West links 1 and 2 and North-
South links 3 and 4 and two signalized intersections. The gray links are not
explicitly modeled.

Figure 1 shows the results of the learning algorithm with
an exploration function fexp(·) that simply outputs random
actions while learning. The product MDP contained 150
states and one acceptance pair, Gi = 500,Bi = −500 and
γ = 0.98. There were 600 trials, which are separated by a
Rabin reset every 200 time steps.

Observe that no policy exists such that φ is satisfied for
all runs of the MDP. For example, it is possible that every
action results in no movement of the robot. However, it is
clear that there exists a policy that satisfies φ with probability
1, thus this example satisfies the conditions for Theorem 1.

B. Control of a Traffic Network with Two Intersections

To demonstrate the utility of our approach, we apply our
control synthesis algorithm to a traffic network with two
signalized intersections as depicted in Figure 2. We employ
a traffic flow model with a time step of 15 seconds. At each
discrete time step, signal v1 either actuates link 1 or link
3, and signal v2 actuates link 2 or link 4. For i = 1, 2,
the Boolean variable svi is equal to 1 if link i is actuated
at signal vi and is equal to 0 otherwise. The set of control
actions is then

A , {(1, 2), (1, 4), (3, 2), (3, 4)} (8)

where, for a ∈ A, l ∈ a implies that link l is actuated. The
gray links in Fig. 2 are not explicitly considered in the model
as they carry traffic out of the network.

The model considers a queue of vehicles waiting on each
link, and at each time step, the queue is forwarded to
downstream links if the queue’s link is actuated and if there
is available road space downstream. If the queue is longer
than some saturating limit, then only this limit is forwarded
and the remainder remains enqueue for the next time step.
The vehicles that are forwarded divide among downstream
links via turn ratios given with the model.

Let Cl > 0 be the capacity of link l. Here, the queue
length is assumed to take on continuous values. To obtain
a discrete model, the interval [0, Cl] ⊂ R is divided into a
finite, disjoint set of subintervals. For example, if link l can
accomodate up to Cl = 40 vehicles, we may divide [0, 40]
into the set {[0, 10], (10, 20], (20, 30], (30, 40]}. The current
discrete state of link l is then the subinterval that contains
the current queue length of link l, and the total state of the
network is the collection of current subintervals containing
the current queue lengths of each link.

Here, we consider probabilistic transitions among the
discrete states and obtain an MDP model with control actions

A as defined in (8). For the example in Fig. 2, we have

(C1, C2, C3, C4) = (40, 50, 30, 30) (9)

and link 1 is divided into four subintervals, link 2 is divided
into five subintervals, and links 3 and 4 are divided into two
subintervals each. In addition, we augment the state space
with the last applied control action so that the control ob-
jective, expressed as a LTL formula, may include conditions
on the traffic lights as is the case below, thus there are 320
total discrete states. The transition probabilities for the MDP
model are determined by the specific subintervals, saturating
limits, and turn ratios. Future research will investigate the
details of abstracting the traffic dynamics to an MDP.

Let xi for i = 1, . . . , 4 denote the number of vehicles en-
queue on link i. We consider the following control objective:

FG(x1 ≤ 30 ∧ x2 ≤ 30)∧ (10)
GF(x3 ≤ 10) ∧GF(x4 ≤ 10)∧ (11)
G((sv2 ∧X(¬sv2)) =⇒ (XX(¬sv2) ∧XXX(¬sv2))).

(12)

In words, (10)–(12) is

(Eventually links 1 and 2 have adequate supply) and
(Infinitely often, links 3 and 4 have short queues) and
(When signal v2 actuates link 4,
it does so for a minimum of 3 times steps)

where “adequate supply” means the number of vehicles on
links 1 and 2 does not exceed 30 vehicles and thus can
always accept incoming traffic, and a queue is “short” if the
queue length is less than 10. Condition (12) is a minimum
green time for actuation of link 4 at signal 2 and may be
necessary if, e.g., there is a pedestrian crosswalk across link 2
which requires at least 45 seconds (three time steps) for safe
crossing (recall that sv2 = 1 when link 2 is actuated). The
above condition is encoded in a Rabin automaton with one
acceptance pair and 37 states. The Rabin-weighted product
MDP contains 11,840 states and rewards corresponding to
the one acceptance pair.

In Fig. 3, we explore how our approach can be used to
synthesize a control policy. Restating (10)–(12), the control
objective requires the two solid traces to eventually remain
below the threshold at 30 vehicles and for the two dashed
traces to infinitely often move below the threshold at 10
vehicles. Additionally, signal 2 should be red for at least
three consecutive time steps whenever it switches from green
to red.

Fig. 3(a) shows a naı̈ve control policy that synchronously
actuates each link for 3 time steps but does not satisfy φ
since x2 remains above 30 vehicles. If estimates of turn ratios
and saturation limits are available from, e.g., historical data,
then we can obtain a MDP that approximates the true traffic
dynamics and determine the optimal control policy for the
corresponding Rabin-weighted product MDP. When applied
to the true traffic model, the controller greatly outperforms
the naive policy but still does not satisfy φ, as shown in Fig.

3(b). However, by modifying this policy via reinforcement
learning on the true traffic dynamics, we obtain a controller
that empirically often satisfies φ as seen in Fig. 3(c) (Note
that we should not expect φ to be satisfied for all traces of
the MDP or all disturbance inputs as such a controller may
not exist).

This example suggests how our approach can be utilized
in practice: a “reasonable” controller can be obtained by
using a Rabin-weighted MDP generated from approximated
traffic parameters. This policy can then be modified online
to obtain a control policy that better accommodates existing
conditions. Additionally, using a suboptimal controller prior
to learning is rarely of serious concern for traffic control as
the cost is only increased delay and congestion.

V. CONCLUSION

We have proposed a method for synthesizing a control
policy for a MDP such that traces of the MDP satisfy a
control objective expressed as a LTL formula. We proved
that our synthesis method is guaranteed to return a controller
that satisfies the LTL formula with probability one if such a
controller exists. We provided two case studies: In the first
case study, we utilize the proposed method to synthesize a
control policy for a virtual agent in a gridded environment,
and in the second case study, we synthesize a traffic signal
controller for a small traffic network with two signalized
intersections.

The most immediate direction for future research is to
investigate theoretical guarantees in the case when the LTL
specification cannot be satisfied with probability one. For
example, it is desirable to prove or disprove the conjecture
that for appropriate weightings in the reward function, our
proposed method finds the control policy that maximizes the
probability of satisfying the LTL specification. In the event
that the conjecture is not true, we wish to identify fragments
of LTL for which the conjecture holds. Future research will
also explore other application areas such as human-in-the-
loop semiautonomous driving.

APPENDIX

A. Proof of Theorem 1

Proof. Suppose π̄ satisfies φ with probability 1, then the
set of states of MP,π̄ written as MCπ̄ can be represented
as a disjoint union of Tπ̄ transient states and Rjπ̄ closed
irreducible sets of recurrent classes [16]:

MCπ̄ = Tπ̄ tR1
π̄ t . . . tRnπ̄ (13)

Proposition 1. Policy π̄ satisfies φ with probability 1 if and
only if there exits (Gi,Bi) ∈ FP such that Bi ∈ Tπ̄ and
Rjπ̄ ∩ Gi 6= ∅ for all recurrent classes Rjπ̄ .

We omit the proof of Proposition 1; however, it readily
follows Definition 6.

Let Π∗ be the finite set of optimal policies that optimize
the expected future utility. We constructively show that for
large enough values of γ, the discount factor and wB , the
negative reward on non accepting states, all policies π∗ ∈ Π∗

satisfy φ with probability 1.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

Time Period

O
cc

up
an

cy
 o

f L
in

k

Link 1 Link 2 Link 3 Link 4

0 5 10 15 20 25 30 35 40 45 50 55 60

1
2

Time Period

S
ig

na
l

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

Time Period

O
cc

up
an

cy
 o

f L
in

k

Link 1 Link 2 Link 3 Link 4

0 5 10 15 20 25 30 35 40 45 50 55 60

1
2

Time Period

S
ig

na
l

(b)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

Time Period

O
cc

up
an

cy
 o

f L
in

k

Link 1 Link 2 Link 3 Link 4

0 5 10 15 20 25 30 35 40 45 50 55 60

1
2

Time Period

S
ig

na
l

(c)

Fig. 3. Sample trajectories of the traffic network in Fig. 2. (a) A simple
controller that synchronously actuates links for 3 time periods and does
not satisfy φ. (b) An optimal controller for an MDP obtained from an
approximate model of the traffic dynamics (e.g., a model with turn ratios
and saturation limits different than reality). This controller outperforms the
previous naı̈ve controller, but does not fully satisfy φ. (c) The controller
from (b) is modified via reinforcement learning on the true traffic model. In
the lower plot for all cases, signal i for i = 1, 2 is green if link i is actuated
and is red otherwise. This example suggests how a reasonable control policy
can be obtained from an approximate MDP estimated via, e.g., historical
data and modified “online” using reinforcement learning on observed traffic
dynamics.

Suppose π∗ ∈ Π∗ does not satisfy φ. Then one of the
following two cases must be true:
• Case 1: There exists a recurrent class Rjπ∗ such that
Rjπ∗ ∩Gi = ∅. This means with policy π∗ it is possible
to visit Gi only finitely often.

• Case 2: There exists b ∈ Bi such that b is recurrent.
That is for some recurrent class of the MP,π∗ , b ∈ Rjπ∗ .
This translates to the possibility of visiting a state in Bi
infinitely often.

We let Π∗ = Π1∪Π2, where Π1(Π2) is the set of optimal
policies that do not satisfy φ by violating Case 1 (Case 2).

Notice that this is not a disjoint union.
In addition, we know that the vector of utilities for any

policy π∗ ∈ Π∗ is Uπ∗ ∈ RN , where N = |MCπ∗ | is the
number of states of MP,π∗ :

Uπ∗ =
∑∞
n=0 γ

nPnπ∗W (14)

In this equation Uπ∗ = [Uπ∗(s0) . . . Uπ∗(sN)]> and W =
[W (s0) . . .W (sN)]> and Pπ∗ is the transition probability
matrix with entries pπ∗(si, sj) which are the probability of
transitioning from si to sj using policy π∗.

We partition the vectors in equation (14) into its transient
and recurrent classes:[
Utr
π∗

Urec
π∗

]
=

∞∑
n=0

γn
[
Pπ∗(T, T) [P tr1π∗ . . . P

trm
π∗]

0(
∑m

i=1Ni×q) Pπ∗(R,R)

]n [
Wtr

Wrec

]
(15)

In equation (15), Utr
π∗ is a vector representing the utility

of every transient state. Assuming we have q transient states,
Pπ∗(T, T) is a q× q probability transition matrix containing
the probability of transitioning from one transient state to
another. Assuming there are m different recurrent classes,
0(

∑m
i=1Ni×q) is a zero matrix representing the probability

of transitioning from any of the m recurrent classes, each
with size Ni to any of the transient states. This probability
is equal to 0 for all of these entries.

On the other hand, Pπ∗ = [P tr1π∗ . . . P
trm
π∗] is a q ×∑m

i=1Ni matrix, where each P trkπ∗ is a q×Nk matrix whose
elements denote the probability of transitioning from any
transient state tj , j ∈ {1, . . . , q} to every state of the kth
recurrent class Rkπ∗ .

Finally, Pπ∗(R,R) is a block diagonal matrix with m
blocks of size

∑m
i=1Ni ×

∑m
i=1Ni for every recurrent

class that states the probabilities of transitioning from one
recurrent state to another. It is clear that Pπ∗(R,R) is a
stochastic matrix since each block of Ni×Ni is a stochastic
matrix [16]. From equation (15), we can conclude:

Urec
π∗ =

∞∑
n=0

γn
[
0 Pπ∗(R,R)n

] [Wtr

Wrec

]
(16)

=

∞∑
n=0

γnPnπ∗(R,R)Wrec (17)

Also with some approximations, a lower bound on Utr
π∗

can be found:

∞∑
n=0

γn
[
Pnπ∗(T, T) Pπ∗P

n
π∗(R,R)

] [Wtr

Wrec

]
< Utr

π∗ (18)

∞∑
n=0

γnPnπ∗(T, T)Wtr +

∞∑
n=0

γnPπ∗P
n
π∗(R,R)Wrec < Utr

π∗

(19)
Case 1:
We first consider all policies π∗ ∈ Π1. These are policies
that violate case 1, thus for π∗ there exists some j such that
Rjπ∗ ∩ Gi = ∅. We choose any state s ∈ Rjπ∗ . Then we use

equation (16) to show that any policy π∗ over state s has a
non-positive utility Uπ∗(s) ≤ 0.

In equation (20), k1 =
∑i−1
j=0Nj , k2 =

∑m
j=i+1Nj , p

rri
π∗

is the vector that corresponds to transition probabilities from
s ∈ Rjπ∗ to any other state in the same recurrent class
using policy π∗. Wj = [W (sj1) . . .W (sjNj)] is the vector
for the reward values of the recurrent class Rjπ∗ . Since none
of these states are in Gi, we conclude that for all elements
w ∈Wj , w ≤ 0.

Uπ∗(s) =U rec
π∗ (s) =

∞∑
n=0

γn
[
0k1×q p

rrj
π∗ 0k2×q

]
Wrec

(20)

=

∞∑
n=0

γnp
rrj
π∗ Wj ≤ 0 =⇒ Uπ∗(s) ≤ 0 (21)

We first consider the case that s is in a recurrent class of
MCπ̄ .

• If s is in some recurrent class s ∈ Rjπ̄ , by proposition 1,
Rjπ̄ ∩ Gi 6= ∅. Therefore, there is at least one sg ∈ Gi
such that sg ∈ Rjπ̄ and s ∈ Rjπ̄ . In addition, we know
that all states in Bi are in the transient class. Therefore
the vector of rewards in this recurrent class Wj as
defined previously contains non-negative elements. That
is for all elements w ∈Wj , 0 ≤ w and there exists at
least one wg ∈Wj , 0 < wg .

0 <

∞∑
n=0

γnp
rrj
π̄ Wj =⇒ 0 < Uπ̄(s) (22)

We have shown that for some s, and any policy π∗ ∈
Π1, Uπ∗(s) < Uπ̄(s) which contradicts the optimality
assumption of π∗ for the case where s ∈ Rjπ̄ . Thus, we
must have that s is in a transient class of MCπ̄ .

• If s is in a transient class s ∈ Tπ̄ , we first find a
lower bound on U tr

π̄ (s), and show this lower bound can
be greater than any positive number for large enough
choice of γ. Note that at minimum all the states in the
transient set of π̄ will have utility of wB < 0, that is
Wtrans = WB = [wB . . . wB], and there will be only
one state sg ∈ Gi that lives in the recurrent class. That
is wG ∈Wrec has a positive reward.

Proposition 2. For transient states t1, t2 ∈ T , there
exists N <∞ such that:

∞∑
n=0

pn(t1, t2) < N, (23)

that is, the infinite sum is bounded [16].

We assume q := |Tπ| is the number of transient states.
In addition, Pnπ̄ (R,R) is a stochastic matrix with row
sum of 1 [16].

∞∑
n=0

γnPnπ̄ (T, T)Wtr + γnPπ̄P
n
π̄ (R,R)Wrec < Utr

π̄

(24)

N1Iq×qWB +

∞∑
n=0

γnPπ̄P
n
π̄ (R,R)Wrec < Utr

π̄ (25)

Proposition 3. If pn(s, s) is the probability of returning
from a state s to itself in n time steps, there exists a
lower bound on

∑∞
n=0 γ

npn(s, s).
First, there exists n̄ such that pn̄(s, s) is nonzero and
bounded. That is s visits itself after n̄ time steps with a
nonzero probability.
Also we know (pn̄(s, s))n < pnn̄(s, s). Therefore:

∞∑
n=0

γnpn(s, s) >

∞∑
n=0

γnn̄pnn̄(s, s) (26)

>

∞∑
n=0

(γn̄)n(pn̄(s, s))n (27)

>
1

1− γn̄
p̄ (28)

Going back to equation (24), we find a stricter lower
bound on the utility of every state Utr

π̄(s) using propo-
sition 3:

N1wB +
1

1− γn̄
m̄ < Uπ̄(s) = Utr

π̄(s) (29)

If 0 < N1wB +
1

1− γn̄
m̄ (30)

=⇒ Uπ∗(s) < Uπ̄(s) (31)
Here m̄ = max(M̄) and M̄ < Pπ̄P̄W

rec, where P̄ is
a block matrix whose nonzero elements are p̄ bounds
derived from proposition 3.
For a fixed wB , we can select a large enough γ so
equation (30) holds for all π∗ ∈ Π1. This condition
implies equation (31) which contradicts with optimality
of any π∗ ∈ Π1. Therefore, π∗ cannot be optimal unless
it visits Gi infinitely often.

Case 2:
Now we consider case 2, where π∗ ∈ Π2. Here for some
b ∈ Bi, b ∈ Rjπ∗ . In addition, this state is in the transient
class of π̄, b ∈ Tπ̄ . Using the same procedure as the previous
case, we find the following upper bound.

Utr
π̄ >

∞∑
n=0

γnPnπ̄ (T, T)Wtr (32)

>

∞∑
n=0

Pnπ̄ (T, T)Wtr (33)

(Proposition 2) > N2Iq×qWB (34)
=⇒ Uπ̄(b) > N2wB (35)

We know that b is in the recurrent class while using policy
π∗. So we can use equation (16) to find a bound on the
utility. An upper bound assumes that all the other states in
the recurrent class have positive reward of wG.

Urec
π∗ =

∞∑
n=0

γnPnπ∗(R,R)Wrec =⇒ (36)

U rec
π∗ (b) ≤

∞∑
n=0

γnwG +

∞∑
n=0

γnpnπ∗(b, b)wB (37)

< wG
1

1− γ
+ wB

∞∑
n=0

γnpnπ∗(b, b) (38)

If the following condition in equation (39) holds, we
conclude that for a state b, Uπ∗(b) < Uπ̄(b) which violates
the optimality of π∗.

Uπ∗(b) < wG
1

1− γ
+ wB

∞∑
n=0

γnpnπ∗(b, b) < N2wB < Uπ̄(b)

(39)
We only need to enforce:

wG
1

1− γ
+ wB

∞∑
n=0

γnpnπ∗(b, b) < N2wB (40)

Since there are only a finite number of policies in Π2,
from all policies π∗ ∈ Π2, we can find p̄ such that:

∞∑
n=0

γnpnπ∗(b, b) <

∞∑
n=0

γnp̄ (41)

Therefore equation (40) can be simplified:

wG
1

1− γ
+ wB

∞∑
n=0

γnp̄ < N2wB (42)

wG
1

1− γ
+ wB

1

1− γ
p̄ < N2wB (43)

(wG + wB p̄)(
1

1− γ
) < N2wB (44)

(wG + wB p̄)−N2wB(1− γ) < 0 (45)

We assumed without loss of generality wG = 1. For a
fixed value of γ, we choose wB small enough so all π∗ ∈ Π2

satisfy equation (45) and violate the optimality condition.
As a result, any optimal policy must satisfy case 2, which

is visiting a state in Bi only finitely often.
For optimal policies π∗ ∈ Π1 ∩ Π2, we need to find γ

and wB such that both conditions for case 1 and case 2 are
satisfied. That is:{

0 < N1wB(1− γn̄) + M̄

(1 + wB p̄)−N2wB(1− γ) < 0
(46)

We select a pair of γ and wB so the system of equations
in (46) is satisfied. This solution can be found as follows:

First, for a small real number 0 < ε < M̄ , we select w∗B
so:

1 + w∗B p̄ < −ε (47)

Then, γ∗ is selected so the following holds:

max{−N1w
∗
B(1− (γ∗)n̄),−N2w

∗
B(1− γ∗)} < ε (48)

The pair of (w∗B , γ
∗) satisfy equation (46), and as a result

none of the policies π∗ ∈ Π∗ are optimal.

REFERENCES

[1] R. Alterovitz, “The stochastic motion roadmap: A sampling framework
for planning with Markov motion uncertainty,” in In Robotics: Science
and Systems, 2007.

[2] S. Temizer, M. J. Kochenderfer, L. P. Kaelbling, T. Lozano-Pérez,
and J. K. Kuchar, “Collision avoidance for unmanned aircraft using
Markov decision processes,” in AIAA Guidance, Navigation, and
Control Conference, Toronto, Canada, 2010.

[3] D. Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Bajcsy,
A. Sangiovanni-Vincentelli, S. Sastry, and S. Seshia, “Data-driven
probabilistic modeling and verification of human driver behavior,” in
Formal Verification and Modeling in Human-Machine Systems, 2014.

[4] E. Wolff, U. Topcu, and R. Murray, “Robust control of uncertain
Markov decision processes with temporal logic specifications,” in
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
Dec 2012, pp. 3372–3379.

[5] M. Lahijanian, S. Andersson, and C. Belta, “A probabilistic approach
for control of a stochastic system from ltl specifications,” in Decision
and Control (CDC), Proceedings of the 48th IEEE Conference on,
Dec 2009, pp. 2236–2241.

[6] X. Ding, S. Smith, C. Belta, and D. Rus, “Optimal control of
LTL decision processes with linear temporal logic constraints,” IEEE
Transactions on Automatic Control, vol. PP, no. 99, pp. 1–1, 2014.

[7] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in VMCAI, 2006, pp. 364–380.

[8] T. Wongpiromsarn, U. Topcu, and R. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, Nov 2012.

[9] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[10] M. Vardi, “Probabilistic linear-time model checking: An overview of
the automata-theoretic approach,” in Formal Methods for Real-Time
and Probabilistic Systems, ser. Lecture Notes in Computer Science,
1999, vol. 1601, pp. 265–276.

[11] J. Klein and C. Baier, “Experiments with deterministic ω-automata for
formulas of linear temporal logic,” in Implementation and Application
of Automata. Springer, 2004.

[12] S. Safra, “On the complexity of ω-automata,” in Proceedings of the
29th Annual Symposium on Foundations of Computer Science, ser.
SFCS ’88, 1988, pp. 319–327.

[13] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall, 2010.

[14] R. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[15] M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine Learning, no. 49, pp. 209–232, 2002.

[16] R. Durrett, Essentials of stochastic processes, 2nd ed., ser. Springer
texts in statistics. New York ; London: Springer, 2012.

