This report discusses a serial implementation of Cuppen's divide and conquer algorithm for computing all eigenvalues and eigenvectors of a real symmetric matrix
T =
Q Lambda
Q^
T. This method is compared with the LAPACK implementations of QR, bisection/inverse iteration, and root-free QR/inverse iteration to find all of the eigenvalues and eigenvectors.
On a DEC Alpha using optimized Basic Linear Algebra Subroutines (BLAS), divide and conquer was uniformly the fastest algorithm by a large margin for large tridiagonal eigenproblems. When Fortran BLAS were used, bisection/inverse iteration was somewhat faster (up to a factor of 2) for very large matrices (n >= 500) without clustered eigenvalues. When eigenvalues were clustered, divide and conquer was up to 80 times faster. The speedups over QR were so large in the tridiagonal case that the overall problem, including reduction to tridiagonal form, sped up by a factor of 2.5 over QR for n >= 500.
Nearly universally, the matrix of eigenvectors generated by divide and conquer suffered the least loss of orthogonality. The smallest eigensystem residual usually came from the eigensystem generated by bisection/inverse iteration, with divide and conquer coming a close second.
Title
A Serial Implementation of Cuppen's Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem
Published
1994-02-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-94-799
Type
Text
Extent
86 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).