For over two decades, researchers have written about microelectromechanical switches and their remarkable performance in terms of low insertion loss, high linearity, high isolation, and extremely low power consumption. Although these characteristics are highly desired in RF applications, the high actuation voltage currently required to operate these switches—typically in the 20 to 80 volts range, presents a challenge for incorporating MEMS switches into portable wireless, low-power, and battery-operated systems. Continuing to push for yet smaller dimensions can help in reducing actuation voltage requirements and provides additional benefits such as higher integration and speed. Despite these advantages, scaling down can also emphasize reliability concerns that reduce the lifetime of the switch. The work presented here touches on the fundamentals of electrostatically actuated RF MEMS switches and the impact of scaling to both reliability and performance.
Title
Reducing Actuation Voltage in RF MEMS Switches and the Impact of Scaling on Performance and Reliability
Published
2018-12-18
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2018-188
Type
Text
Extent
14 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).