Go to main content

PDF

Description

We consider the problem of performing compositional verification of a system with machine learning components whose behavior cannot easily be formally specified. We present an approach involving a system-level verifier communicating with a component-level analyzer wherein the former identifies a subset of environment behaviors that might lead to a system-level failure while the latter identifies erroneous behaviors, such as misclassifications, of the machine learning component that might be extended to a system-level counterexample. Results on cyber-physical systems with deep learning components used for perception demonstrate the promise of this approach.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS