Software bugs are inevitable in software-defined networking control software, and troubleshooting is a tedious, time-consuming task. In this thesis we discuss how to improve control software troubleshooting by presenting a technique for automatically identifying a minimal sequence of inputs responsible for triggering a given bug, without making assumptions about the language or instrumentation of the software under test. We apply our technique to five open source SDN control platforms---Floodlight, NOX, POX, Pyretic, ONOS---and illustrate how the minimal causal sequences our system found aided the troubleshooting process.
Title
Troubleshooting Blackbox SDN Control Software With Minimal Causal Sequences
Published
2014-05-08
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2014-57
Type
Text
Extent
51 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).